<iframe width="932" height="524" src="https://www.youtube.com/embed/RFADpAOT3yA" title="The Weird Economy Of Salt" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
the bible,truth,God's kingdom,Jehovah God,New World,Jehovah's Witnesses,God's church,Christianity,apologetics,spirituality.
Tuesday, 28 March 2023
On the father of the bomb.
<iframe width="932" height="524" src="https://www.youtube.com/embed/fmLNXKHnoNE" title="How the Atomic Bomb Destroyed the Life of its Creator" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
The pale horse on the rampage.
<iframe width="932" height="524" src="https://www.youtube.com/embed/WG1aY5OOR2o" title="How the World’s Deadliest Ebola Outbreak Unfolded (full documentary) | FRONTLINE" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
AI's moral deficit?
Robert J. Mark on AI’s Glaring Errors
Robert J. Marks contributed a piece at The Daily Caller this week on artificial intelligence, ChatGPT, and the manifold problems of new AI systems like Google’s Bard and older ones such as Amazon’s Alexa. Dr. Marks directs Discovery Institute’s Bradley Center and is author of the recent DI Press Book Non-Computable You. Despite the confidence in new AI coming from Big Tech executives, it makes quite glaring mistakes, although Marks believes AI has its genuine uses and benefits. Snapchat’s chatbot “My AI” gave advice about how to hide the smell of pot and alcohol to someone posing as a disgruntled teenager. Microsoft’s Bing bot professed its love for a tech journalist. A Google app made egregiously racist errors. ChatGPT is also politically biased despite claiming neutrality.
Marks writes,
Many warn of the future dangers of artificial intelligence. Many envision AI becoming conscious and, like SkyNet in theTerminator franchise, taking over the world (This, by the way, will never happen). But make no mistake. LLMs are incredible for what they do right. I have used ChatGPT many times. But user beware. Don’t trust what an LLM says, be aware of its biases and be ready for the occasional outlandish response.
ROBERT MARKS, MARKS: FROM POLITICAL BIAS TO OUTLANDISH DARES, HERE’S WHY ROBOTS CANNOT REPLACE US | THE DAILY CALLER
Marks encourages readers to try out ChatGPT and come to their own conclusions. Be sure to read the rest of his article Here
And yet even more primeval tech Vs Darwinism.
A Power Grid in Muscle Cells Has Profound Design Implications
A finding announced in Nature represents a blockbuster for intelligent design. We knew about ATP synthase — that rotary engine that uses proton flow to create “batteries” of energy-packed ATP molecules. Those motors in the mitochondria are arranged along folds (cristae) in the mitochondrial membranes to maximize their output.
But researchers have learned that the mitochondria themselves are connected by electrical wires in a vast intracellular network. This allows us to see another level in the hierarchy of design in the cell.
The findings are of revolutionary significance. Skeletal muscle cells were known to have many mitochondria, but it was not clear how the products of ATP production, called metabolites, became distributed throughout the cell. Many assumed it was by diffusion, or simple spreading out of molecules from regions of high concentration to areas of low concentration. The truth is far more exciting. Research News from the National Institutes of Health explains:
A new study overturns longstanding scientific ideas regarding how energy is distributed within muscles for powering movement. Scientists are reporting the first clear evidence that muscle cells distribute energy primarily by the rapid conduction of electrical charges through a vast, interconnected network of mitochondria — the cell’s “powerhouse” — in a way that resembles the wire grid that distributes power throughout a city. The study offers an unprecedented, detailed look at the distribution system that rapidly provides energy throughout the cell where it is needed for muscle contraction.
Introducing the “Mitochondrial Reticulum”
Diffusion is too slow for a fast-acting muscle cell. Electricity, though, is fast. The same proton-motive force that powers ATP synthase is conducted along cellular wires, the researchers found. You’ve heard of the endoplasmic reticulum. They’re calling this one the “mitochondrial reticulum” — a conductive pathway for energy distribution. The Editor’s Summary of the paper puts it this way:
How is energy distributed within the cell? In the skeletal muscle, energy distribution has been proposed to occur through metabolite-facilitated diffusion, although genetic evidence has raised questions about the importance of this mode of distribution. Using various forms of high-resolution microscopy, Robert Balaban and colleagues explore whether the mitochondria themselves — as well as actually generating the energy — also have a role in its distribution. They find that they do, by forming a conductive pathway throughout the cell in the form of a proton-motive force. Throughout this network, the mitochondrial protein localization seems to be varied, allowing optimized generation and utilization of the mitochondrial membrane potential. This energy distribution network, which depends on conduction rather than diffusion, is potentially extremely rapid, thereby enabling muscle to respond almost instantaneously to new energy demands.
Not only is the system extremely fast, it is well organized. The Abstract states:
Within this reticulum, we find proteins associated with mitochondrial proton-motive force production preferentially in the cell periphery and proteins that use the proton-motive force for ATP production in the cell interior near contractile and transport ATPases. Furthermore, we show a rapid, coordinated depolarization of the membrane potential component of the proton-motive force throughout the cell in response to spatially controlled uncoupling of the cell interior. We propose that membrane potential conduction via the mitochondrial reticulum is the dominant pathway for skeletal muscle energy distribution.
The mitochondrial reticulum was known before, but scientists had not previously seen that it conducts electricity. The potential of this discovery to shed light on muscular dystrophy, heart disease, and other disorders is apparent.
The images in the paper even look like a power grid. More:
For the current experiments, the NIH scientists collaborated in a detailed study of the mitochondria structure, biochemical composition, and function in mouse skeletal muscle cells. The researchers used 3D electron microscopy as well as super-resolution optical imaging techniques to show that most of the mitochondria form highly connected networks in a way that resembles electrical transmission lines in a municipal power grid.
A Case of Design Prediction
It’s clear why this is a superior design to diffusion. Strenuous exercise can raise the power demands of a muscle cell by 100-fold. “Researchers have suspected that a faster, more efficient energy pathway might exist but have found little proof of its
existence — until now,” we read. That’s a case of design prediction!
Robert Balaban of the National Heart, Lung, and Blood Institute (NHLBI), a co-leader of the team, tells more about how well-optimized the organization of this power grid is.
The study provides unprecedented images of how these mitochondria are arranged in muscle. “Structurally, the mitochondria are arranged in such a way that permits the flow of potential energy in the form of the mitochondrial membrane voltage throughout the cell to power ATP production and subsequent muscle contraction, or movement,” Dr. Balaban explained. Mitochondria located on the edges of the muscle cell near blood vessels and oxygen supply are optimized for generating the mitochondrial membrane voltage, while the interconnected mitochondria deep in the muscle are optimized for using the voltage to produce ATP, Balaban added.
This implies another level in the design hierarchy: not only is the power grid well organized inside the cell, but the cells are organized in the muscle tissues for the optimum utilization of the power where it is needed most.
Implications for Intelligent Design
The implications of this spectacular discovery for intelligent design are profound. To see why, we must remember that muscles first appear in the Cambrian explosion. Many of the Cambrian phyla that burst on the scene had muscles for contraction (jellyfish), crawling (worms), fin movement (Anomalocaris and Metaspriggina, the vertebrate fish), and coordinated action of jointed appendages (trilobites and other arthropods). Most of the Cambrian animals used muscles in various ways. Muscles are but one of many new cell types that appear suddenly, fully functional, across multiple phyla in the early Cambrian.
As Stephen Meyer emphasizes in Darwin’s Doubt, these new cell types are arranged in a hierarchy: tissues, organs, systems — and ultimately, integrated body plans. This hierarchical arrangement of complex parts for unified function challenges all undirected mechanisms such as natural selection. It takes foresight — a plan for a functional goal and the means to achieve it — to bring parts together into a hierarchical arrangement that works. The film Darwin’s Dilemma illustrates this point as well. In our uniform experience, Meyer argues, the only cause capable of doing that is intelligence.
Now we can extend this hierarchical thinking into the arrangement inside one new cell type in a Cambrian animal: a muscle cell. That optimal hierarchical arrangement, furthermore, extends downward into the intracellular environment and upward into the tissue in which the cell resides. It’s hierarchy all the way down.
Secular humanism's Homer?
Rescuing Evolutionary Theory from Darwinian Mythology
On a new episode of ID the Future, historian of science Michael Keas begins a two-part conversation with Robert Shedinger, the Wilford A. Johnson Chair of Biblical Studies and Professor of Religion at Luther College and author most recently of The Mystery of Evolutionary Mechanisms: Darwinian Biology’s Grand Narrative of Triumph and the Subversion of Religion. Shedinger reports on the contrast between Darwin’s private view of his theory of natural selection and the public view as detailed in his published work. Shedinger also notes the deficiency in evidence for Darwin’s proposal, despite claims to the contrary from his followers and evangelizers today. Download the podcast or listen to it Here
Subscribe to:
Posts (Atom)