People Can Do Puzzles — And Why That matters
Occasionally, during the winter months, my family enjoys doing a jigsaw puzzle. We recently completed two 1,000-piece puzzles. If you’ve ever worked on one of these puzzles, when you first dump the pieces in a jumble onto the table, it can seem like a daunting task. With persistence, however, the thing begins to come together.
Our ability to complete a puzzle hinges upon clues that are unavailable to nature, were natural processes given the task of assembling the puzzle. Assembling proteins, DNA, and other molecular components of a living cell are the puzzles of nature. Why do I say this?
Clue #1: We are given a clear picture of how the completed puzzle should look. The picture on the puzzle box gives the overarching meaning or purpose for the many interlocking pieces. Nature has no teleological picture of how things should turn out. Whatever nature attempts to assemble is done blindfolded, without foresight. What difference would this make? Just imagine trying to put together a jigsaw puzzle without having a clue about how the completed picture should look. I suppose some intrepid puzzle enthusiasts might attempt this, but without the end goal in view, progress would at best be painstaking, tentative, and slow.
Clue #2: We can constantly visually examine each piece to observe its relationship to other pieces. These visual clues include information about the shape and orientation of the puzzle piece cutouts that allow it to uniquely connect with its neighboring pieces. We also have available to us the visual clues of the image fragments on each piece, helping us to quickly discern if a given piece matches others.
Very Picky About Relationships
What does nature have available to it, when attempting to assemble a system such as a complex biomolecule? The nature of chemical bonding will allow some “pieces” to be selected, while excluding others. But nature has no clues concerning which atom or molecule, among those that could bond, is the appropriate one to bring the project closer to a particular end result. End results, such as functional proteins, are known to be very picky when it comes to getting the right relationships among the component pieces.
To better understand the handicap nature plays with, imagine trying to complete a puzzle blindfolded! Undaunted, someone might maintain that it could still be done, however tediously, by trying one piece after another, until your sense of touch informed you that you had found the piece that uniquely fit with its neighbor. Some puzzles are designed this way, where only one piece has the appropriate cutouts to fit in a particular location. However, what if multiple different pieces had the same shape, but only one piece had the correct image to match the pattern building up to form the predetermined completed picture? Your sense of touch would be insufficient. The tactile clues for which piece to insert next couldn’t supply you with the necessary information. Getting the right pieces assembled in the right arrangement to produce the right final picture would be reduced to luck.
What’s the Chance of That?
Let’s start with a simple puzzle with a child’s level of difficulty, having only 60 pieces. Trying to assemble it blindfolded, not knowing what the final image is, and wearing mittens so that you can’t feel the cutout shapes makes this “simple” task impossible. Let’s see why.
The first piece is “free.” Then you have 59 choices for the second piece. If, by luck you got it right, you would then have 58 choices for the third piece, and so on. So, the probability of getting all the pieces assembled correctly is 1:59! That is, 59 factorial, which works out to about 1 chance in 1080. This is equivalent to finding one unique proton out of all the protons in the entire universe! These impossibly small odds are for something that is merely “child’s play” for a normally intelligent human.
Humans Can Do Puzzles
The point here is not really to ponder how improbable it would be for natural processes to correctly assemble a jigsaw puzzle (and admittedly, the real odds would be much smaller than calculated in the paragraph above, since each piece has two sides and each piece has a continuous degree of orientations it could be rotated through in order to properly fit it into place). The point is that humans can do puzzles. This has consequences for our picture of reality. Under a materialistic view, holding that nothing exists except the matter and energy and spacetime of our universe, the inescapable, but absurd, conclusion is that natural processes can correctly assemble jigsaw puzzles.
Under the materialistic view, natural processes gave rise to humans (as a sort of intermediate step to the completed puzzle), and humans then put together puzzles (as well as cars and computers and cities). So, from beginning to end, the materialist must believe that the primordial hydrogen plasma of the universe, governed by nothing other than the laws of physics, will in just a few billion years turn into humans who do jigsaw puzzles!
The power of intelligence is remarkable. What could never happen by the unguided operation of the forces of nature acting on matter, is done as a relaxing pastime by intelligent humans. If this unnatural accomplishment seems a puzzle to the materialist, then perhaps a different perspective is in order. Since our intelligence instantiates outcomes (cars, computers, cities, and puzzles) that cannot arise by unguided nature, then our humanness cannot be naturally derived either. A view of reality that embraces an intelligent mind behind the universe corresponds most reasonably to the big picture that emerges when we properly fit together all the puzzling pieces of our existence.