Search This Blog

Sunday 4 February 2018

Yet more on the Elixir of life.

Behind Water’s Beauty, Wondrous Utility
Sarah Chaffee


This scene is about a five-minute walk from our Seattle office, and it never gets old. But when I think about it, it’s a lot about water.

In Seattle, it’s particularly easy to accept the centrality of water to every aspect of our lives — whether it’s salmon for dinner, taking the ferry to the peninsula, wearing hooded jackets from October to April (it’s a Seattle saying that you can pick out the tourists by looking to see if they are using an umbrella). Or (for me) it’s spending a day up at Snoqualmie Pass, snowshoeing on the Pacific Crest Trail.

But it’s more than that. As the picture above shows, we see the water cycle in action. Here’s an explanation.

In The Wonder of Water, this is what Michael Denton says about what water does between mountains and ocean:

[W]e have seen that it is the unique capacity of water to exist in the three stages of matter in the ambient temperature range, in conjunction with the low viscosity of ice and water, that makes possible the hydrological cycle, which has reliably delivered water to the terrestrial ecosystems of planet Earth for millions of years. And because the turning of the hydrological wheel depends largely on the unique properties of water, this means that in effect, water, the very matrix of life, delivers itself to land-based ecosystems by its own capacities. We also have seen that water further possesses just the right suite of diverse chemical and physical properties for the efficient erosion and weathering of the rocks, and for extracting the essential nutrients of life, while at the same time generating the key constituents of the soils that store that vital harvest for the benefit of plant life and indirectly all animal life on land.

In the case of water’s erosional and weathering abilities, it is hard to imagine any phenomenon more indicative of design. Here is a diverse set of physical and chemical properties that convey the impression of having been arranged specifically to the end of breaking down rocks both mechanically and chemically. Even if just one property were involved in eroding the rocks it would be wonder enough, especially in conjunction with the fact that the hydrological cycle depends, as discussed above, on the unique capacity of water to exist in multiple states in ambient conditions. But already we have touched on not one but at least five different properties of water that work together in the task of breaking down rocks and weathering minerals: (1) water’s ability to exist in three different staets in the ambient temperature range; (2) water’s high surface tension; (3) water’s expansion on freezing; (4) water’s viscosity; and (5) water’s capacity to dissolve an unusually wide variety of substances.

Perhaps the conspiracy is not the result of design? But certainly the appearance of design is highly suggestive, or even “overwhelming” — the term used by Paul Davies in describing the apparent design of the cosmic fine-tuning of the laws of physics for life.

Further, if the precious water and its cargo of dissolved minerals is to be used by land plants, it must be entrapped in some medium and held fast rather than permitted to run quickly to the sea. Again, water comes to the rescue. Because as we saw, the same erosional and weathering processes that provide the minerals for land-based life also inevitably generate a set of material components, including perhaps most importantly various clays, that confer on soil superb water- and mineral-retaining properties, which are vital if those same minerals are to be accessed and used by growing plants.

So the same process that yields the minerals also yields the means for plants to use them. Moreover, one of the properties that assists in the erosion of the rocks and hence in the making of soil — water’s high surface tension — is also the key property that holds water in the micropores in the sol, retaining it for use by land plants. And of course all this is a fitness for land-based life! Marine plants have no need for water-retaining soil!

Water’s properties are fit as a delivery man, quarry master, and store-keeper for land-based life, all in one! This is not mere everyday design; analogous to that seen in human technology; this is design of a transcending elegance and parsimony.


Hmm. Behind the beauty of Seattle’s famous views, there is wondrous utility.

Naturalism v. Naturalism?

Naturalism and Self-Refutation
Michael Egnor

Tom Clark  at Brandeis University has a blog called  Naturalism.Org. On his blog he presents a lengthy defense of naturalism as a metaphysical, scientific, and social project. Clark’s blog is valuable because he presents detailed arguments in favor of naturalism, which is unusual. Much of naturalist/materialist blogging is so poorly thought-out that it’s difficult to respond to with anything except satire. Clark at least attempts a coherent logical defense of naturalism, and this opens the door to some interesting discussions.

What is naturalism? Clark defines it thus:

Naturalism asserts that the world is of a piece; everything we are and do is included in the space-time continuum whose most basic elements are those described by physics.

Already we encounter problems for naturalism. Mathematics is certainly something we do. Is mathematics “included in the space-time continuum [with] basic elements … described by physics”? It seems a stretch. What is the physics behind the Pythagorean theorem? After all, no actual triangle is perfect, and thus no actual triangle in nature has sides such that the Pythagorean theorem holds. There is no real triangle in which the sum of the squares of the sides exactly equals the square of the hypotenuse. That holds true for all of geometry. Geometry is about concepts, not about anything in the natural world or about anything that can be described by physics. What is the “physics” of the fact that the area of a circle is pi multiplied by the square of the radius? And of course what is natural and physical about imaginary numbers, infinite series, irrational numbers, and the mathematics of more than three spatial dimensions? Mathematics is entirely about concepts, which have no precise instantiation in nature as described by physics.

Clark would likely argue that the concepts of mathematics are the products of our brains, which are purely material things. But that’s merely an assertion based on metaphysical presupposition, without any basis in physics or science. The hallmarks of the mind — intentionality, qualia, restricted access, the generation of propositions and logic, etc., have nothing whatsoever to do with matter. Matter, as understood by physics, isn’t intentional — it isn’t about anything. Matter is not inherently subjective, it doesn’t generate propositions or logic, etc.

For Clark, thoughts merely appear out of matter, which has no properties, by the laws of physics, for generating thought. For Clark to assert that naturalistic matter as described by physics gives rise to the mind, without immateriality of any sort, is merely to assert magic.

Furthermore, the very framework of Clark’s argument — logic — is neither material nor natural. Logic, after all, doesn’t exist “in the space-time continuum” and isn’t described by physics. What is the location of modus ponens? How much does Gödel’s incompleteness theorem weigh? What is the physics of non-contradiction? How many millimeters long is Clark’s argument for naturalism? Ironically the very logic that Clark employs to argue for naturalism is outside of any naturalistic frame.


The strength of Clark’s defense of naturalism is that it is an attempt to present naturalism’s tenets clearly and logically. That is its weakness as well, because it exposes naturalism to scrutiny, and naturalism cannot withstand even minimal scrutiny. Even to define naturalism is to refute it.

Going nuclear?

Earlier Burgess-Shale-Type Fossils Found in Greenland
Evolution News @DiscoveryCSC


Graham Budd has been critical of associations between Ediacaran fauna and Cambrian animals, and has also debunked alleged Precambrian animal ancestors such as Vernanimalcula (Stephen Meyer,Darwin’s Doubt, pp. 85, 90-91). Budd also was in attendance at the Darwin-doubting Altenberg 16 conference in 2008 (p. 292), confessing that the fossil record tells little about the origin of biological forms. This Cambrian expert from Uppsala University has a new paper in Geology describing new exquisitely-preserved fossils of the Burgess Shale type, but earlier. Along with lead writer Ben Slater, Graham Budd’s team unveils photographs of tiny but exquisite parts of arthropods, worms and other animals that burst into appearance in the Cambrian Explosion. What’s amazing is that these fossils were collected not in Canada or China, but in the northern reaches of Greenland.

The location, called Sirius Passet in Peary Land in the far north of Greenland, has been known as an early Cambrian fossil site, but it lies close to a geological fold belt. Having been heated to 200° C or more by metamorphism, most of the fossils at Sirius Passet have suffered thermal alteration and are difficult to interpret. Not far to the south, however, the team found sites in the same formation that escaped most of the alteration.News from Uppsala University describes how they found a “treasure trove of highly detailed fossils” of the Burgess Shale type.

The ‘Cambrian explosion’ of animal diversity beginning ~541 million years ago is a defining episode in the history of life. This was a time when the seas first teemed with animal life, and the first recognisably ‘modern’ ecosystems began to take shape.

Current accounts of this explosion in animal diversity rely heavily on records from fossilised shells and other hard parts, since these structures are the most likely to survive as fossils. However, since most marine animals are ‘soft-bodied’ this represents only a small fraction of the total diversity.

Rare sites of exceptional fossilisation, like the world-famous Burgess Shale, have revolutionised palaeontologists understanding of ‘soft-bodied’ Cambrian life. Because of the special conditions of fossilisation at these localities, organisms that did not produce hard mineralized shells or skeletons are also preserved. Such sites offer a rare glimpse into the true diversity of these ancient seas, which were filled with a dazzling array of soft and squishy predatory worms and arthropods (the group containing modern crustaceans and insects). 

Also important is that these fossils date earlier than the Burgess Shale by 10 million years (518 million instead of 508 million), and yet are recognizable as the same animals. This indicates that the Cambrian animals had a global distribution at the time they were fossilized. The same animals are found many thousands of miles apart on three continents.

Instead of the large, articulated fossils from China and Canada, those at the Greenland sites are made up of tiny fragments. So rich were the deposits, they often found 100 specimens in a 50-gram sample.

A team of palaeontologists from Uppsala (Ben Slater, Sebastian Willman, Graham Budd and John Peel) used a low-manipulation acid extraction procedure to dissolve some of these less intensively cooked mudrocks. To their astonishment, this simple preparation technique revealed a wealth of previously unknown microscopic animal fossils preserved in spectacular detail.

Most of the fossils were less than a millimetre long and had to be studied under the microscope. Fossils at the nearby Sirius Passet site typically preserve much larger animals, so the new finds fill an important gap in our knowledge of the small-scale animals that probably made up the majority of these ecosystems. Among the discoveries were the tiny spines and teeth of priapulid worms — small hook shaped structures that allowed these worms to efficiently burrow through the sediments and capture prey. Other finds included the tough outer cuticles and defensive spines of various arthropods, and perhaps most surprisingly, microscopic fragments of the oldest known pterobranch hemichordates — an obscure group of tube-dwelling filter feeders that are distant relatives of the vertebrates. This group became very diverse after the Cambrian Period and are among some of the most commonly found fossils in rocks from younger deposits, but were entirely unknown from the early Cambrian. This new source of fossils will also help palaeontologists to better understand the famously difficult to interpret fossils at the nearby Sirius Passet site, where the flattened animal fossils are usually complete, but missing crucial microscopic details.

The photos of the small carbonaceous fossils (SCFs) in the paper show exquisite details of identifiable Burgess Shale type animals. Pieces of trilobite cuticles were also found. Trilobites are among the most complex of Cambrian animals, possessing articulated limbs, eyes and multiple body systems for locomotion, digestion and survival. The authors seem most excited about finding the earliest pterobranch hemichordates (a type of filter feeder known in the Burgess Shale), recognizing that the worldwide distribution indicates an even earlier origin. The paper says,

Our report of early Cambrian pterobranch fragments confirms this hypothesis [of early origin], and their potential affinities to Graptolithina also suggest that the divergence and radiation of the pterobranch clades containing cephalodiscids and graptolites had a somewhat deeper, early Cambrian origin.

Nowhere do they suggest evidence for evolution or transitional forms. On the contrary, these new fossils confirm the picture of abrupt appearance and stasis. The best the team can say is that this fossil site offers “new insights” into the fossilization process and may “reshape our view” of this ‘episode’ known as the Cambrian explosion:

“The sheer abundance of these miniature animal fossils means that we have only begun to scratch the surface of this overlooked resource, but it is already clear that this discovery will help to reshape our view of the non-shelly animals that crawled and swam among the early Cambrian seas more than half a billion years ago,” says Sebastian Willman, researcher at the Department of Earth Sciences, Uppsala University.

Marshall Is Back

In 2013, U.C. Berkeley paleontologist Charles Marshall published a critique of Darwin’s Doubt in the journal Science that Stephen Meyer considered the first critical review to actually address the main argument in the book: the inability of standard evolutionary mechanisms to explain the origin of morphological novelty in the Cambrian period. Meyer wrote a four-chapter response to Marshall in the follow-up book,  Debating Darwin’s Doubt (2015).

Late last year, Marshall wrote an article in Science (November 29, 2017) called “A tip of the hat to evolutionary change,” in which he reviewed another paper in the same issue that claims to reveal “an unexpectedly simple pattern of driver action in peak evolutionary success.” That paper by Žliobaitė et al concludes from the fossil record of herbivorous mammals that species rise toward success and decline toward extinction in a “hat shape” graph (thus his title).  In passing, Marshall admits that “one of the challenges of studying evolution … is the hierarchical structure of the evolutionary process.” What drives innovation: abiotic (environmental) processes or biotic processes, like competition? How do they work together? How simple is the rise to “evolutionary success”?

Though only peripherally related to evolutionary processes in the Cambrian explosion, Marshall’s article shows what he thinks these days about the origin of biological novelty. Old-fashioned Darwinian competition is a driver of extinction, he agrees, but what drives innovation?

The results of Žliobaitė and colleagues’ work also provide insight into the drivers of evolutionary innovation. The authors’ data for North America and Europe show that, although both biotic and abiotic factors contribute roughly equally to genus origination rates, neither contribution is statistically significant. As the authors note, this provides evidence that evolutionary innovation is not driven by biotic or abiotic external changes. Instead, the data support the idea that evolutionary innovation is influenced by intrinsic factors — the less-predictable origin of the ‘right’ variants at the right time, able to exploit either existing or new resources.

This statement indicates that nothing much has changed in his thinking. It appears Marshall still has no better tool for innovation than lucky mutations that just happen to arrive at the right time to be exploited. How this solution can possibly address the “hierarchical structure of the evolutionary process” leading to body plans with hierarchical levels of morphological innovation seems lost in academic jargon and generalizations.


The Greenland fossils are observational facts. Graham Budd’s team in that cold, remote, northern wasteland could look at those cold, hard facts under a microscope, seeing complexity that shouldn’t be there by any unguided natural process. If Charles Marshall had a better mechanism for innovation than sheer dumb luck, he has had years to announce it. Until and unless he does, Meyer’s thesis remains unchallenged: only intelligent design can account for the functional hierarchical organization revealed by the Cambrian animals.