Search This Blog

Sunday, 4 February 2018

Yet more on the Elixir of life.

Behind Water’s Beauty, Wondrous Utility
Sarah Chaffee


This scene is about a five-minute walk from our Seattle office, and it never gets old. But when I think about it, it’s a lot about water.

In Seattle, it’s particularly easy to accept the centrality of water to every aspect of our lives — whether it’s salmon for dinner, taking the ferry to the peninsula, wearing hooded jackets from October to April (it’s a Seattle saying that you can pick out the tourists by looking to see if they are using an umbrella). Or (for me) it’s spending a day up at Snoqualmie Pass, snowshoeing on the Pacific Crest Trail.

But it’s more than that. As the picture above shows, we see the water cycle in action. Here’s an explanation.

In The Wonder of Water, this is what Michael Denton says about what water does between mountains and ocean:

[W]e have seen that it is the unique capacity of water to exist in the three stages of matter in the ambient temperature range, in conjunction with the low viscosity of ice and water, that makes possible the hydrological cycle, which has reliably delivered water to the terrestrial ecosystems of planet Earth for millions of years. And because the turning of the hydrological wheel depends largely on the unique properties of water, this means that in effect, water, the very matrix of life, delivers itself to land-based ecosystems by its own capacities. We also have seen that water further possesses just the right suite of diverse chemical and physical properties for the efficient erosion and weathering of the rocks, and for extracting the essential nutrients of life, while at the same time generating the key constituents of the soils that store that vital harvest for the benefit of plant life and indirectly all animal life on land.

In the case of water’s erosional and weathering abilities, it is hard to imagine any phenomenon more indicative of design. Here is a diverse set of physical and chemical properties that convey the impression of having been arranged specifically to the end of breaking down rocks both mechanically and chemically. Even if just one property were involved in eroding the rocks it would be wonder enough, especially in conjunction with the fact that the hydrological cycle depends, as discussed above, on the unique capacity of water to exist in multiple states in ambient conditions. But already we have touched on not one but at least five different properties of water that work together in the task of breaking down rocks and weathering minerals: (1) water’s ability to exist in three different staets in the ambient temperature range; (2) water’s high surface tension; (3) water’s expansion on freezing; (4) water’s viscosity; and (5) water’s capacity to dissolve an unusually wide variety of substances.

Perhaps the conspiracy is not the result of design? But certainly the appearance of design is highly suggestive, or even “overwhelming” — the term used by Paul Davies in describing the apparent design of the cosmic fine-tuning of the laws of physics for life.

Further, if the precious water and its cargo of dissolved minerals is to be used by land plants, it must be entrapped in some medium and held fast rather than permitted to run quickly to the sea. Again, water comes to the rescue. Because as we saw, the same erosional and weathering processes that provide the minerals for land-based life also inevitably generate a set of material components, including perhaps most importantly various clays, that confer on soil superb water- and mineral-retaining properties, which are vital if those same minerals are to be accessed and used by growing plants.

So the same process that yields the minerals also yields the means for plants to use them. Moreover, one of the properties that assists in the erosion of the rocks and hence in the making of soil — water’s high surface tension — is also the key property that holds water in the micropores in the sol, retaining it for use by land plants. And of course all this is a fitness for land-based life! Marine plants have no need for water-retaining soil!

Water’s properties are fit as a delivery man, quarry master, and store-keeper for land-based life, all in one! This is not mere everyday design; analogous to that seen in human technology; this is design of a transcending elegance and parsimony.


Hmm. Behind the beauty of Seattle’s famous views, there is wondrous utility.

No comments:

Post a Comment

Note: only a member of this blog may post a comment.