Evolution as Carpenter: Scientist Concludes Repetitive Elements "Are an Important Toolkit"
Cornelius Hunter
I'm not an expert carpenter, but if I know what needs to be built I'll eventually get there. It may not be beautiful, but given a blueprint I can build a structure.
What if I didn't have that blueprint, though? What if I had no idea what needed to be built -- no notion of where the task was headed? Furthermore, what if I had no knowledge of structures in general. Just randomly cutting wood and pounding nails probably would not end well. This is the elephant in the room for evolution, for according to evolutionary theory, random actions are precisely what built the world.
It is what the Epicureans claimed two thousand years ago, and this random-creation hypothesis fares no better today than it did then. In fact, with the findings of modern science we now know far more about the details than did the Epicureans, and it has just gotten worse for their hypothesis.
This is why evolutionists habitually appeal to teleological language. Regulatory genes "were reused to produce different functions," Dinosaurs "were experimenting" with flight, and the genome was "designed by evolution to sense and respond." Such Aristotelianism, which casts evolution as an intelligent process working toward a goal, makes the story more palatable; after all, evolution had a blueprint in mind.
All of this makes for a glaring internal contradiction: on the one hand evolution has goals; yet on the other hand evolution is a mindless, mechanical process driven by random, chance events. As University College London molecular neuroscientist Jernej Ule explains:
We're all here because of mutations. Random changes in genes are what creates variety in a species, and this is what allows it to adapt to new environments and eventually evolve into completely new species.
This makes evolution, rather inconveniently, dependent on random events (no, natural selection doesn't change this -- it cannot coax the right mutations to occur) which, by definition, do not work towards a goal -- they do not build anything:
This ambiguity creates a great challenge. On the one hand, mutations are needed for biological innovation, and on the other hand they cause diseases.
Indeed. This is not looking good. As Washington State University biologist Michael Skinner recently wrote:
[T]he rate of random DNA sequence mutation turns out to be too slow to explain many of the changes observed. Scientists, well aware of the issue, have proposed a variety of genetic mechanisms to compensate: genetic drift, in which small groups of individuals undergo dramatic genetic change; or epistasis, in which one set of genes suppress another, to name just two. Yet even with such mechanisms in play, genetic mutation rates for complex organisms such as humans are dramatically lower than the frequency of change [between species if evolution is true] for a host of traits, from adjustments in metabolism to resistance to disease.
Whereas Skinner appeals to epigenetics to save the theory, Ule appeals to repetitive elements. Evidence has shown that far from being "junk DNA," repetitive elements play a genetic regulatory role. As a result evolutionists such as Ule have concluded repetitive elements "are an important toolkit for evolution."
Like any good carpenter, evolution has a toolkit.
Ule and his co-workers are now elaborating on the details of how repetitive element toolkit might work. It goes like this: (i) Random mutations gradually modify repetitive elements, (ii) these repetitive elements are sometimes incorporated as part of the blueprint instructions for making a protein, (iii) there are several complicated molecular machines that either repress or allow such incorporation of these repetitive elements in the blueprint.
According to Ule, this complicated process, including these two opposing machines that are "tightly coupled," allows evolution to experiment and successfully evolve more complicated species, such as humans:
We've known for decades that evolution needs to tinker with genetic elements so they can accumulate mutations while minimising disruption to the fitness of a species. ... This [process we have discovered] allows the Alu elements to remain in a harmless state in our DNA over long evolutionary periods, during which they accumulate a lot of change via mutations. As a result, they become less harmful and gradually start escaping the repressive force. Eventually, some of them take on an important function and became indispensable pieces of human genes. To put it another way, the balanced forces buy the time needed for mutations to make beneficial changes, rather than disruptive ones, to a species. And this is why evolution proceeds in such small steps - it only works if the two forces remain balanced by complementary mutations, which takes time. Eventually, important new molecular functions can emerge from randomness.
These suggestions from Skinner and Ule are the latest in a long, long line of ideas evolutionists have come up with, in an attempt to make sense of their random-creation hypothesis. In modern evolutionary thought, the first such idea was natural selection.
The reason there is a long, long line of ideas is none of them work. They are becoming ever more complicated, ever more unlikely, and equally useless in solving the basic problem of random events constructing the world.
But Ule's latest attempt highlights yet another problem: serendipity. All of the solutions, from natural selection on up to epigenetics and repetitive elements, rely on serendipity, and this reliance is increasing. Ule's solution is serendipity on steroids, for the idea holds that evolution just happened to create (i) repetitive elements, and (ii) the complicated, finely tuned, opposing molecular machines that repress or allow those repetitive elements into the protein instructions.
This isn't going to work, but the point here is that even if it did somehow work, it amounts to evolution creating evolution. In order for evolution to have created so many of the species, it first must have lucked into creating these incredible mechanisms, which then in turn allowed evolution to occur. And all of this must have occurred with no foresight.
Imagine a car factory that uses highly complex machines, such as drill presses and lathes, to build the cars. Now imagine the factory first creating those machines by random chance, so that then the cars could be built by yet more random chance events. This violates the very basics of science. It is just silly.