Search This Blog

Wednesday, 1 February 2023

On Darwin's blunder?

Darwin’s Category Errors and Their Consequences


After his return from the Beagle expedition in the later 1830s Charles Darwin spent some time putting together thoughts about evolution which were to result in a provisional, unpublished pencil sketch of 1842 and in another, informal essay of 1844 both of which, in expanded form, were to form the basis of his Origin of Species of 1859. It was because his eventual magnum opus was to remain under wraps for the best part of two decades that Darwin in this period might have appeared to be more active in the field of geological debate than he was in the biological sphere. Yet behind the scenes he was working on both fronts at the same time and his modus operandi in his geological work may be usefully compared with his methods in the biological sphere, all the more so since his approach to biological matters was so heavily influenced by methods used by Sir Charles Lyell, Britain’s premier geologist of the earlier Victorian era. 

Thinking in Analogies

Darwin’s first public communication in this pre-Origin of Species period was on the subject of whether a Scottish loch had been of marine or fresh water provenance. The geological puzzle concerned some physical features in the Glen Roy area of the Highlands of Scotland, some twenty miles from Loch Ness, an area noted for the geological phenomenon of its three “roads,” as local folklore terms them. It is now known that the so-called parallel roads on a hillside in Glen Roy are in reality loch terraces or strand lines that formed along the shorelines of an ancient ice-dammed loch at the time of the last Ice Age. The ice had repeatedly melted and refrozen over geological time with the water levels coming to rest at slightly different set points each time. In 1839, in a paper read before the Royal Society, Darwin unwisely chanced his arm by seeking to explain these roads as having resulted from ancient, marine beaches; but premier Harvard academic Louis Agassiz and Scots geologists soon showed that this must have been an ancient freshwater lake once dammed up by ice (the Swiss-American Agassiz had ample experience of glaciers in the country of his birth).

What is instructive about Darwin’s swiftly disproved conjecture is that it was based on a misleading analogy he had come across in his voyaging years in South America. This he freely confessed in his autobiography when he wrote,

This paper was a great failure, and I am ashamed of it. Having been deeply impressed with what I had seen of elevation of the land in S. America, I attributed the parallel lines to the action of the sea; but I had to give up this view when Agassiz propounded his glacier-like theory.1

As Robert Shedinger has observed, Darwin advanced his theory despite the telling absence of any ancient marine residues such as seashells, adding that “when Darwin developed what he thought he felt was a compelling idea, he doggedly held to it even when faced with a lack of clear evidence.”2 This was a tendency readily observable in the biological sphere when he notoriously declined to recognize the true import of the absence of fossilized transitional forms as being detrimental to his theory of natural selection with its (claimed) capacity to leap-frog over the species barrier — that physiological barrier whose importance had been repeatedly underscored by such authorities as Cuvier and Richard Owen.

Argument from an inappropriate analogy was also to bedevil a second geological theory Darwin developed in 1842, this time in relation to the formation of coral reefs. During his travels in South America he had once observed what he took to be evidence that coral reefs emerged with the subsidence of surrounding land: as the land subsided, a coral reef or atoll would come to the fore. However, work by other geologists suggested that as often as not the reverse could be the case. That is, land underneath the sea would rise and bring towards the surface small organic forms congregating in reefs. Darwin’s theory could not then be one of general validity and his would-be universal theory could not in the end be substantiated. Crossing over to the biological sphere again one is reminded of Darwin’s wholly theoretical postulation of those hereditary entities he termed “gemmules,” a theory which failed to find acceptance since the postulation had no empirical back-up, as even Darwin conceded (it was definitively disproved by Mendelian genetics at the beginning of the 20th century).

A Major Category Error

In addition to resistance to such questionable analogies in Darwin’s thinking, there also arose the profounder objection lodged by Sir Charles Lyell to the effect that biology and geology ought not properly to be even mentioned in the same breath. In Lyell’s view the implicit analogy invoked by Darwin between the two domains was impermissible. It was of course only natural, given that Darwin’s earliest publications were in the field of geology, that he took Sir Charles Lyell, the leading geologist of the mid-Victorian era, as guide. Lyell’s three-volume Principles of Geology (1830-3), which worked on and developed geological principles first enunciated by James Hutton in his Theory of the Earth (1788), was to furnish an important intellectual springboard for the Origin of Species, as Darwin himself readily acknowledged. Lyell had described the crust of the earth by reference to natural forces alone without reference to such phenomena as the Biblical Flood (which he dismissed as “Mosaic geology”). Since Lyell had removed the hand of God from geological history, why then retain it to explain natural history in terms of separate special creations? If there was a story of natural evolution in the geological record, so too surely there must be a similar story to tell in the study of sentient beings, Darwin reasoned.

Yet although biological gradualism-cum-natural selection inspired by the idea of geological “uniformitarianism”3 seemed an uncontroversial form of intellectual progression to Darwin, Lyell thought that Darwin carried over his early formation as a geologist into the biological realm too indiscriminately and without attending to the appropriate modifications of analysis required. In short, Darwin’s ambition to apply Lyell’s uniformitarian approach to biology represented for Lyell a wrong-headed determination to postulate an ontological equivalence between organic and inorganic spheres. Discounting Darwin’s implied equivalence between geology and biology, Lyell as late as 1872 (and despite numerous appeals by Darwin himself) declared the basic problem of creation/evolution to be as inscrutable as it had been in the earlier Victorian period when it was candidly termed “the mystery of mysteries.” In Lyell’s opinion, Darwin’s intervention had solved nothing since it had been flawed from the start by some fundamentally misconceived philosophical reasoning. 

One can easily see the force of Lyell’s objection. There seem to be limited grounds for comparing the wholly material and inorganic substratum of Earth with its living superstructure. One would not, for instance, think it appropriate to compare rocks and cliffs with human consciousness and view those entities as lying only slightly distant from each other on the same sliding scale. There is a great difference between planet Earth as a geological formation, which shares its history and mode of formation with the rest of the outer cosmos, and the later, superposed realm of terrestrial life and sentience, that superstructure of life forms of unknown etiology thought to have developed on our once barren planet only some five million years ago — which in geological terms of course counts as fairly recently. That ancient geological segment of our planet is self-evidently different in kind to the animate sphere, being quite simple in texture when compared with the quite unsearchable complexities and subtleties of the organic world.4 As Barry Gale once pointed out, 

Mountains might decay and new mountains be thrust up again, but these new mountains were not considered to be more complex or very different from previous ones. For Lyell, there were no basic changes in the forms of natural phenomena.5

Lyell denied any development in non-organic phenomena which simply underwent slow, non-directional change over the eons. Although the earth was in a state of constant flux, it was not moving in any particular direction. Darwin on the other hand claimed that, in the organic world, there was a progression of forms with movement over time from the very simple to the exceptionally complex. Such was the grand narrative of evolution which Darwin inherited and extended from the work of his grandfather, Erasmus Darwin. Yet since nothing of this sort was observable in Lyell’s inorganic world of arbitrary forces it is hardly surprising that Lyell thought the two domains incommensurable. 

A Category Error Repeated?

The living part of our planet then has no identifiable counterpart in the external universe — despite unceasing attempts by space explorers to somehow conjure life from what appears to be the irredeemable barrenness found on Mars and other bodies in the external universe. There are now conspicuously fewer alien-hunters about than there were in the era of Frank Drake and Carl Sagan in the 1970s and ’80s6 since modern space science tends to confirm Lyell’s view of the radical dissimilarity of organic and inorganic worlds. The sheer exceptionalism of the terrestrial biosphere stands in sharp contrast both to the life-denying deadness of the outer cosmos and even to 90 percent of the world we inhabit. Viewed quantitatively, the areas of our planet amenable to human habitation represent a relatively small area of the earth for, as Michael Marshall has recently noted, our ambient atmosphere above a certain height will kill us (a fact all too well-known to mountain climbers, let alone astronauts) and so would the ever-burning furnace at the earth’s core were we to descend so far. Only about 10 percent of our world is human friendly (to this degree or that) with many terrestrial extremities remaining “egregiously hostile to life.”7 Our much-bruited “Goldilocks zone” is all the more to be treasured for being such a very narrow band of habitability. Life on earth represents an absolute cosmic singularity (pace the alien-hunters) and, being such a singularity, is by definition not amenable to comparison with anything else at all.

It is the way in which critical parts of our planet represent an albeit flawed paradise whereas some terrestrial extremities together with all known outer parts of the universe remain a life-averse hellscape which requires pondering, comments Marshall. This decidedly nontrivial distinction has indeed been pondered, particularly in the last half century in debates stemming from our somewhat belated recognition of the exceptionalism of Planet Earth. This has led to a considerable shift in what might be termed many persons’ cosmographic imagination. In no few cases it has resulted in a very sharp reversal of the once very influential cosmological Weltanschauung typical of philosopher Bertrand Russell’s generation in the first half of the 20th century.

The Cosmographic Paradigm Shift 

Where once Russell (to whom Richard Dawkins likes to acknowledge his philosophic debt) famously described Planet Earth as an accident in a cosmic backwater, the recently revealed bio-friendliness of our planet would appear to stand in implicit opposition to that older conception of Earth as an unconsidered cosmic orphan. Crucially, Russell was writing in the first decades of the 20th century, well before the discovery of what astrophysicist Brandon Carter in 1973 dubbed the “anthropic principle” — meaning the way in which planet Earth appears to be fine-tuned to generate and sustain animal and human life.8 Indeed, so complete is the discontinuity between Earth and the extraterrestrial dead zone revealed by modern findings that it seems to make nonsense of the centuries-old “Copernican principle” whose general acceptance ousted the earth from the centrality it had enjoyed in the medieval world picture. Michael Denton has even gone so far as to suggest that the openly anthropocentric view held by our medieval forbears — that our world represented the geographic center of the universe — should now be rehabilitated under revision. To be sure, planet Earth is clearly not central in the spatial sense but it certainly is so in the far more important symbolic and moral sense that we are the unique beneficiaries of a planet on which all available meaning centers — a recognition that has proved little less than revolutionary in changing hearts and minds. 

It is not insignificant that, five years after the promulgation of the anthropic principle, eminent biologist William H. Thorpe encouraged a return to ideas of intelligent design first proposed by William Paley in his famous Natural Theology (1802):

The Argument from Design has been brought back to a central position in our thought from which it was banished by the theory of evolution by natural selection more than a century ago. There seems now to be justification for assuming that from its first moment the universe was “ordered” or programmed — was in fact Cosmos not Chaos.9

Leading astronomers such as Paul Davies have endorsed that sentiment by stressing how such benign cosmic arrangements as we enjoy could hardly have arisen by chance. Davies points out that it is a merely semantic point as to whether you conceive of the shaping force behind this providential arrangement as the Christian God or some other unseen power.10 The essential point remains that it is logically impossible to conceive of our planet as an arbitrary and accidental collocation of atoms, objects, and life-forms (as both ancient Lucretianism11 and Lucretianism’s modern legatee, present-day evolutionary orthodoxy, insist in the teeth of universal evidence to the contrary). 

And even if we are obliged to concede that the ultimate seat of authority cannot be apprehended by our common, anthropomorphic categories of understanding, a basic respect for the balance of probabilities should dictate that the existence of such an agent be taken seriously in our current conversations. It is of course well enough known that some cosmologists have, for purely doctrinaire reasons, tried to evade the theistic implications of the available evidence by appealing to a wholly imaginary “multiverse.” They have wished to conclude that planet Earth’s unique good fortune is due to a kind of cosmic roulette wheel which decreed that somewhere had to be the winner from an infinity of parallel universes. Lyell’s fine distinctions have apparently been lost sight of in the rather wholesale views of those who, like Darwin, would indiscriminately lump together organic and inorganic spheres — a grand category error whose origin Lyell would have diagnosed as a lack of clarity in philosophic reasoning — the same kind of contra-logical reasoning that is determined to believe that human consciousness will have arisen as an accidental “epiphenomenon” of purely material factors.















Why the multiverse is no match for JEHOVAH

Four Reasons the Multiverse Fails as Science


Writing in Salvo Magazine, our colleague Andrew McDiarmid neatly summarizes four reasons the multiverse fails as a scientific explanation of cosmic origins. He cites Stephen Meyer and the method of “adductive reasoning,” outlined in Return of the God hypothesis 


In his book Return of the God Hypothesis, Meyer weighs the explanatory power of the multiverse and provides at least four reasons to be skeptical. The first difficulty with such many-layered theories is that they violate the law of parsimony, known as Ockham’s razor. This well-known practice, commonly applied in science and philosophy, states that when formulating educated guesses to explain things, one should avoid suggesting multiple explanatory entities without necessity. To subscribe to the multiverse, one would also need to subscribe to a host of other notions, including other universes, inflaton fields, tiny strings of energy, hidden spatial dimensions, gravitons, gravitinos, and more. In the end, our observations and experience of the world suggest that the hypothesis rooted in elegant simplicity has a better chance of being correct.

Another problem with multiverse proposals is that they are purely hypothetical. There is no way to observe them first-hand. Although unobservability is a hallmark of historical sciences, theorists must be careful not to give too much credit to numbers and laws themselves. Math can’t produce phenomena — it can only describe things already in existence. As Stephen Hawking wrote in his book A Brief History of Time, “What is it that breathes fire into the equations and makes a universe for them to describe?” 

A third reason Meyer doubts the explanatory power of multiverse ideas is that they end up pushing the origin problem further back. The universe generating mechanisms of the multiverse would themselves require prior unexplained fine tuning. Plus, the multiverse requires an even greater initial surge of energy than the standard Big Bang model. That means more disorder (entropy) and an even greater order required at the beginning. More fine-tuning means more that the multiverse must explain. Fourthly, key predictions of inflationary multiverse models have failed to materialize, as has evidence of the “supersymmetry” proposed by string theory. This has brought about more contrived variations on the models, leading to what some philosophers of science call bloated theories.
The multiverse theory has been embraced as a defense against what Meyer calls the God Hypothesis, the idea that an intelligent agent, not a cosmic lottery, lies behind the existence of our universe. The defense, though, is a weak one, for scientific rather than religious reasons. Andrew McDiarmid is a Senior Fellow at Discovery Institute.

More on how we know that the engineering is real.

New Engineering Ideas from Biology 




The 2023 Conference on Engineering in Living Systems, organized by the CSC’s Engineering Research Group, is set for June 1-3 in Denton, Texas. (More info and an application is here) New engineering ideas from biology? That’s right. Engineers won’t run out of inspiration any time soon if they look at the living world. From cell to ecosystem, life knows how to solve problems — how to engineer solutions, it’s not unfair to say. Here are some new illustrations.

Click Like a Beetle

Robot designers face a show-stopper when their invention falls over. Solution? Design like a click beetle. When this insect gets turned upside down, it launches itself with a rapid click, using elastic energy stored in its exoskeleton. Biologists at the University of Illinois were intrigued. News from the U of I says, with pun intended, “Researchers have made a significant leap forward in developing insect-sized jumping robots capable of performing tasks in the small spaces often found in mechanical, agricultural and search-and-rescue settings.”

Researchers at the University of Illinois Urbana-Champaign and Princeton University have studied click beetle anatomy, mechanics and evolution over the past decade. A 2020 study found that snap buckling — the rapid release of elastic energy — of a coiled muscle within a click beetle’s thorax is triggered to allow them to propel themselves in the air many times their body length, as a means of righting themselves if flipped onto their backs.

A 12-second demonstration of their invention is shown in the article. “This process, called a dynamic buckling cascade, is simple compared to the anatomy of a click beetle,” admitted Samek Tawfick, a mechanical science and engineering professor at the University of Illinois. Obviously, their gadget can’t make babies. 

Control Heat Like a Camel

Firefighters depend on their special suits for protection from the flames but leave the lifesaving heroes soaked in sweat. New Scientist reports, “Fabric inspired by camel’s hump could protect firefighters from heat.” How is that? Camels have had to face heat challenges ever since the first ancient peoples learned to ride them across the desert on trade routes. They were pre-designed for prolonged exposure to the sun’s fiery rays.

Jian Fang at Soochow University in China and his colleagues have developed an insulating fabric that uses pockets of aerogel, in which the liquid component of a gel is replaced with gas. It is sandwiched between two layers of heat resistant plastic polymer. This is said to mimic the fat stores in a camel’s hump.

Camel hair wicks water from the animal’s sweat glands to the outside air. Material that mimics the fat and hair in camels can not only exceed the specifications of today’s firefighting uniforms, but also keep the first responders more comfortable as they work.

The aerogel pockets are produced using ultrasonic welding, where sound is used to melt the two layers of plastic together at various points. This process also creates micropores in the fabric that can wick away moisture. “We created many pore structures, like the camel’s sweat glands, that can guide liquid from inside to outside, helping you when you get sweaty,” says Fang.

When the researchers exposed the fabric to temperatures of about 80°C (176°F) for about 20 minutes, they found that a thermostatic plate covered by it stayed around 20°C cooler than one covered by conventional firefighter uniform fabric. And when it was exposed to a 1000°C flame for 10 seconds, the camel-hump fabric also suffered far less burning and damage.

The engineered “biomimicking” fabric also traps 13 percent less moisture, is cheap, and easy to make. It looks promising.

Echo Like a Bat

How bats navigate through foliage after their target prey presents a difficult challenge. “Foliage echoes in some cases can help bats gather information about the environment,” says a new paper in PLOS ONE , “whereas in others may generate clutter that can mask prey echoes during foraging.” Hongxiao Zhu from the University of Virginia and colleagues from the UK and Japan had already built a “foliage echo simulator” they could use with a “biomimetic sonar head” to investigate how the bat sorts the useful echoes from the clutter. 

In this work, we improve the existing simulator by allowing more flexible experimental setups and enabling a closer match with the experiments. Specifically, we add additional features into the simulator including separate directivity patterns for emitter and receiver, the ability to place emitter and receiver at distinct locations, and multiple options to orient the foliage to mimic natural conditions like strong wind. To study how accurately the simulator can replicate the real echo-generating process, we compare simulated echoes with experimental echoes measured by ensonifying a single leaf across four different species of trees. We further extend the prior work on estimating foliage parameters to estimating a map of the environment.

Bats can make mental maps of their surroundings with sound; that’s remarkable. The research team’s approach — which is engineering all the way down — reveals the complexity of the problem that the bat solves so well: discriminating information from noise in a field of clutter. No mention of evolution was found in the paper. The authors begin their publication with this amazing factoid:


Many bat species rely on echolocation — they emit short ultrasonic pulses and listen for the returning echoes to support navigation and prey hunting. The dominant frequency in bat biosonar pulses can reach up to 212 kHz with thresholds for object detection as low as 0.05 mm — smaller than the thickness of human hair. The extremely capable sonar sensing system coupled with low energy requirements makes bats an excellent biological model for the study of smart sonar systems.

Heal Like a Fungus
Materials scientists have long been biomimetics fans, imitating spider web silk, nacre in oysters, and superhydrophobic leaves of water lilies. In a paper in Nature Materials , researchers from the Netherlands and Switzerland began their paper with praise for the qualities of living materials, particularly fungi. Why mimic them when you can partner with them?


Biological living materials, such as animal bones and plant stems, are able to self-heal, regenerate, adapt and make decisions under environmental pressures. Despite recent successful efforts to imbue synthetic materials with some of these remarkable functionalities, many emerging properties of complex adaptive systems found in biology remain unexplored in engineered living materials. Here, we describe a three-dimensional printing approach that harnesses the emerging properties of fungal mycelia to create living complex materials that self-repair, regenerate and adapt to the environment while fulfilling an engineering function.

This is the 21st-century version of putting a harness on an ox or horse. It took a long time to build an “iron horse” (locomotive) that could exceed the power of an animal. Even so, the engineered copy lacked some of the advantages of the biological inspiration, such as ability to eat grass, make copies of itself and not pollute. If these researchers can harness fungi for clean, self-healing, adaptive “green” technologies, that’s a solution engineers will aspire to.

Smell Like a Dog

A headline from CORDIS asks, “Why can’t we replace sniffer dogs with electronic noses?” Olfaction seems simple in concept; absorb volatile organic compounds (VOC), classify them and identify them according to a lookup table or memory. The reality is much more complicated. Accompanying a photo of a smart-looking German shepherd with nose to the wind, this article gives a status report on progress with “e-nose” technology. The “future is bright” the technology, but after 40 years of work, dogs are still ahead by a nose. Why?

“While it should be possible to train e-noses to smell most things that dogs can smell, dogs retain certain advantages. Their sense of smell is extremely sensitive and can identify VOCs at very low concentrations. Sensors also have shorter lifespans than dogs and are more vulnerable to humidity and temperature,” remarks Roque [a biomechanical engineer in Portugal].

Nose engineers find it difficult to miniaturize the sensors and computers into an autonomous robot, “given the processing power required and the large number of validation samples that the sensors have to accommodate.” So far, e-noses only work for specific types of odorants. Engineers have a long way to go to match the broad talent in dogs that can sniff out everything from squirrels to drugs to cancer cells. Dogs can also detect minute traces of VOCs and chase them along a gradient. Human engineers may need another 40 years.



Evolution Is Like Engineering?

The click-beetle scientist, Sameh Tawfik, repeated a worn-out evolutionary canard that claims evolution is like engineering. He said, “this study plants a seed in the evolution of this technology — a process similar to biologic evolution.” Darwin notoriously compared blind natural selection to goal-oriented artificial selection. In doing so, he created an industry in academia that commits this logical fallacy routinely. Once the magical thinking gets extricated from press offices as the parasitic meme it is, bio-inspired engineering can leap forward with credit going where it belongs — to intelligent design.

The engineering perspective in biology, as exemplified magnificently in Your Designed Body by Steve Laufmann (one of the leaders behind CELS) and Howard Glicksman, offers twin advantages over Darwinism. The first and immediate benefit is practical: ushering in a golden age of new technologies that can bring convenience, safety, and health to everyone. The second — even more significant — is philosophical. It can replace the storytelling of Darwinism that denigrates biology as a heap of junk arrived at by multitudes of accidents, and instead exalt biology with the awe it deserves for solving environmental problems with elegant solutions. This could generate superior understanding of life processes (as engineers attempt to mimic them), imbue life sciences with purpose, and make biology class exciting again.