the bible,truth,God's kingdom,Jehovah God,New World,Jehovah's Witnesses,God's church,Christianity,apologetics,spirituality.
Thursday, 8 August 2024
Darwinism is devolving?
Thursday, 11 January 2024
Thursday, 29 June 2023
Tuesday, 27 June 2023
Darwinists' problem is not with design but the designer.
New Study Reveals How the Shape of My Nose Arose
It is ironic that Charles Lyell, whose seminal, if flawed, work in geology—the barrister is sometimes known as the father of modern geology—positively influenced Charles Darwin’s development of evolutionary theory—the young Darwin read Lyell’s book as he sailed around the world in the H.M.S. Beagle—and who helped to arrange for Darwin’s first formal, if awkward, presentation of his theory—an event precipitated by Wallace’s Ternate letter—was one of the last of the intelligentsia to accept Darwin’s new formulation of Epicureanism, known as evolution.
At one point an exasperated Darwin asked Lyell—it always comes down to metaphysics—if he believed “the shape of my nose was designed?” If Lyell did think so then, Darwin added, “I have nothing more to say.” The infra-dignitatem, or infra-dig for the irreverent, argument, which insisted that it was beneath the dignity of the Creator to stoop so low as to dwell in the details of the world, had been promoted by no less than the father of natural theology John Ray and Platonist Ralph Cudworth, and in Darwin’s day was in full swing. Its influence on the young Darwin was clear in the naturalist’s early notebooks, and here in his appeal to Lyell. One look at one’s nose is all one needs to know about origins. Obviously we evolved. Now, a century and a half later, science finally has its say in the matter.
A new Study out of, appropriately enough, England, now reveals the underlying genetic details that influence the shape of our noses. It seems there are four genes that influence the width and length of our olfactory device and, as the press release informs us, “The new information adds to our understanding of how the human face evolved.”
A theory of devolution?
Is Adaptation Actually a Fight to Stay the Same?
On a new episode of ID the Future, host Casey Luskin talks with Eric Anderson on location at this year’s Conference on Engineering and Living Systems (CELS). The two discuss an intriguing new engineering-based model of bounded adaptation that could dramatically change how we view small-scale evolutionary changes within populations of organisms. In presenting his argument for natural selection, Charles Darwin pointed to small changes like finch beak size and peppered moth color as visible evidence of an unguided evolutionary process at work. Many have adopted this perspective, quick to grant the Darwinian mechanism credit for micro-, if not macro-, evolution. But Anderson and other attendees at the CELS conference are starting to promote a different view. “We need to stop saying organisms are partly designed,” says Anderson. “We need to view them as deeply designed and purposeful, active and engaged in their environments, and capable of adapting within their operating parameters.” To get a fascinating glimpse of this novel approach to biology, download the podcast or listen to it here .
Monday, 26 June 2023
On professor Dave and the bacterial flagellum
Answering Farina on Behe’s Work: Bacterial Flagella
In a previous article, I began a series of four responses to YouTuber Dave Farina (aka “Professor Dave”) about his video reviewing Dr. Michael Behe’s three books. Here I will turn my attention to Mr. Farina’s comments regarding bacterial flagella.
In relation to the flagellum, the video complains about Behe’s “dishonest usage of terminology pertaining to machinery,” including phrases such as “outboard motor,” “drive shaft,” “universal joint,” “bushings,” and “clutch and braking system.” In reality, this terminology is used widely in the scientific literature. It’s not unique to Behe. On the contrary, in reference to flagella, the literature is full of such terms including “motor”,1 “drive shaft,”2 “universal joint,”3“bushing,”4 and “clutch.”5 The word “machine” itself has a wide circulation.6 Is Farina going to charge the entire flagella research community with dishonesty as well?
Co-option Scenarios for the Origins of Bacterial Flagella
According to the video, “A flagellum that merely twitches instead of rotating smoothly would also produce motion and thus could be selected for.” But a type IV pilis, which enables twitching motility (a form of bacterial translocation over moist surfaces), is very different from a flagellum. Twitching motility occurs by extension, tethering, and retraction of the type IV pilus, which functions in a manner akin to a grappling hook. A flagellum, on the other hand, rotates as it is driven by a proton motive force across the cell membrane. The assembly mechanisms of pili and flagella are also quite different.
The video complains that Behe fails to acknowledge the existence of alternative flagellar systems that are simpler than the model system found in Salmonella species and Escherichia coli. However, the fact that an alternative system lacks a specific component that is essential in another system does not mean that the former lacks an alternative mechanism for achieving the same outcome. The most robust concept of irreducible complexity understands it as a property of a system that is contributed to by multiple subfunctions, the removal of one of which causes the overall system to effectively cease performing its job. Note that each individual subfunction could, in principle, be performed by multiple protein components. Likewise, a single protein component could perform more than one of those subfunctions. Furthermore, the identity of the specific components performing each respective subfunction could differ from one organism to the next. It is therefore not the identity of the structural parts that is important in an irreducibly complex system, but rather the essential functions that need to be performed in order for a higher-level objective to be realized.
Moreover, pointing to homologues of flagellar proteins does not undermine the argument from irreducible complexity, since co-opting those proteins to produce a flagellar system requires multiple co-incident changes in order for the new system to be realized. For example, flagellar-specific proteins would not confer a selective advantage until incorporated into the flagellar system. But the necessary proteins that serve roles in other systems will not become incorporated into the flagellar system before these flagellar-specific proteins arise. This is quite aside from the need to have complementary protein-protein binding interfaces, as well as a choreographed assembly system to ensure that the proteins are assembled in the appropriate order.
Resurrecting a Flagellum
In a 2016 article at Evolution News, Behe asks,
W]hy doesn’t [Kenneth Miller] just take an appropriate bacterial species, knock out the genes for its flagellum, place the bacterium under selective pressure (for mobility, say), and experimentally produce a flagellum — or any equally complex system — in the laboratory? (A flagellum, after all, has only 30-40 genes, not the hundreds Miller claims would be easy for natural selection to rapidly redesign.) If he did that, my claims would be utterly falsified. But he won’t even try it because he is grossly exaggerating the prospects of success.
The video by Farina comments,
hilariously, [Behe] is oblivious to the fact that this precise experiment was carried out the year before. Here’s the paper. Gene deletion produced two strains of bacteria with no flagellum. They then introduced selective pressure for motility by depleting the nutrients in the colony. Within 96 hours, both strains had regenerated flagellar motility by a pathway involving two successive point mutations in genes that served other purposes.
However, the paper that Farina cites7 does not do this at all. Not for the first time with this video, I wonder if he has in fact read the paper. All that the researchers deleted was the flagellar master switch protein, FleQ, in Pseudomonas fluorescens. After a few days of incubating the bacterial cells on Petri dishes, they reacquired their ability to grow flagella. The genetic basis for this reactivation of the flagella is that another master switch protein, NtrC, that is a structurally similar homolog of FleQ — responsible for turning on genes involved in nitrogen metabolism — already had the ability, to some extent, to cross-bind to the promoter usually bound by FleQ. When produced in excess, as a result of a broken regulator, NtrC was thus able to drive flagellar synthesis. As a consequence of this mutation, the bacterial cell lost its ability to regulate its nitrogen metabolism genes. An article in The Scientist describes this research:
But while the re-evolved flagella enabled the bacteria to access food supplies at the farthest reaches of the Petri dish, the ability came at a price. ‘The bacteria that became much better at swimming were much worse at nitrogen regulation,’ said Johnson. However, she added, ‘sometimes the advantage can be so great that it’s worth paying that cost because otherwise you die.’
Thus, contrary to the Farina video’s claims, this paper does not document the de novo evolutionary origins of a bacterial flagellum at all — far from it. In fact, Behe has already addressed the paper here.
The Waiting Times Problem
In 2004, Michael Behe and David Snoke published a paper in the journal, Protein Science.8 About this paper, Farina has three complaints. The first complaint is that, “Behe and Snoke found that the target sequence did actually evolve, in population sizes and timeframes that are entirely realistic, and if anything, quite small compared to real-world populations. The paper literally proves them wrong and they somehow count it as a win anyway.” Farina mentions Behe’s expert testimony at the 2005 Kitzmiller v. Dover trial:
When questioned about his 2004 paper, Behe tacitly acknowledged that the population size in their model was orders of magnitude smaller than real-world bacterial populations, which had the effect of vastly underestimating the rate at which such “irreducible” traits could evolve… In one striking exchange, Behe acknowledged a paper which indicated that there are more prokaryotes in a single ton of soil than in his model population, and that there is a lot more than one ton of soil on Earth.
However, this objection stems from Farina’s misreading of the paper. As Behe himself explains in the very transcript that Farina cites, “forming a new disulfide bond might require as few as two point mutations. But forming other multi-residue features such as protein-protein binding sites might require more.” The graph below (figure 6 of the paper) shows Behe and Snoke’s estimate of the time to fixation (along the y-axis) versus the number of substitutions needed for a new feature to evolve (along the x-axis). On the top axis, values for the needed population sizes are given. The point is that, as the number of needed co-dependent mutations increases, so too does the needed population size and waiting time to fixation.
As Behe and Snoke explain in the paper, in a scenario where three substitutions are required for a novel feature to arise, a population size of roughly 1011 individuals is necessary for it to become fixed over the course of 108 generations (108 generations is marked as a horizontal bar on the figure). If the complex trait in question requires even more substitutions, it would require considerably more time. If six mutations were needed, the average population size required for it to become fixed in 108 generations would be on the order of 1022 individuals. Given that 1030 is a plausible estimate of the number of microorganisms on the entire planet9, these numbers become prohibitive very quickly.
The second complaint is that, “In their model, Behe and Snoke permitted only single-base mutations and natural selection — no recombination, no duplications beyond the initial presumed one, no other evolutionary changes.” But the authors explicitly say that “Because the model presented here does not include recombination, the results can be considered to be most applicable to a haploid, asexual population.” Nonetheless, they do note in the conclusion to their paper that “the results also impinge on the evolution of diploid sexual organisms,” since large multicellular organisms have much, much smaller population sizes than bacteria. If the evolution of complex features is difficult for microorganisms (with their massive population sizes and short generation turnover times), how much more so for large animals? Though one might counter, in the case of diploid sexual species, that recombination allows for neutral mutations to occur separately in a population and to later combine by sexual recombination, Christiansen et al. have shown, in a paper published in Theoretical Population Biology, that “Recombination lowers the waiting time until a new genotypic combination first appears, but the effect is small compared to that of the mutation rate and population size” (emphasis added).10
Finally, Farina complains that “They also specified a pre-determined target sequence and only considered the simulation to have been ‘successful’ if that specific target evolved.” But this is incorrect. Rather, the paper provides estimates for how many organisms would be required, and over how long a time frame, for multiple co-dependent mutations (none of which by themselves confers an advantage) to become fixed in a population.
Notes
Minamino T, Imada K, Namba K. Molecular motors of the bacterial flagella. Curr Opin Struct Biol. 2008; 18(6):693-701.
Johnson S, Furlong EJ, Deme JC, Nord AL, Caesar JJE, Chevance FFV, Berry RM, Hughes KT, Lea SM. Molecular structure of the intact bacterial flagellar basal body. Nat Microbiol. 2021; 6(6):712-721.
Kitao A, Hata H. Molecular dynamics simulation of bacterial flagella. Biophys Rev. 2018; 10(2):617-629.
Yamaguchi T, Makino F, Miyata T, Minamino T, Kato T, Namba K. Structure of the molecular bushing of the bacterial flagellar motor. Nat Commun. 2021 Jul 22;12(1):4469.
Blair KM, Turner L, Winkelman JT, Berg HC, Kearns DB. A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science. 2008;320(5883):1636-8.
Sowa Y, Berry RM. Bacterial flagellar motor. Q Rev Biophys. 2008 May;41(2):103-32.
Taylor TB, Mulley G, Dills AH, Alsohim AS, McGuffin LJ, Studholme DJ, Silby MW, Brockhurst MA, Johnson LJ, Jackson RW. Evolution. Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system. Science. 2015; 347(6225):1014-7.
Behe MJ, Snoke DW. Simulating evolution by gene duplication of protein features that require multiple amino acid residues. Protein Sci. 2004; 13(10):2651-64.
Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998; 95(12):6578-83.
Christiansen FB, Otto SP, Bergman A, Feldman MW. Waiting with and without recombination: the time to production of a double mutant. Theor Popul Biol.1998;53(3):199-215.
Monday, 5 June 2023
Everyone's favourite contrarian is at it again.
New! Philosopher and Mathematician David Berlinski on “Science After Babel”
Whether deconstructing the latest theory of everything or dishing on scientists and mathematicians he has known, whatever David Berlinski writes is delightful and profitable to read!
MICHAEL BEHE, PROFESSOR OF BIOLOGICAL SCIENCES, LEHIGH UNIVERSITY, AUTHOR OF DARWIN’S BLACK BOX, THE EDGE OF EVOLUTION, AND DARWIN DEVOLVES
If I were picking two books to be required reading for every college student in the United States, Science After Babel would be one. A striking and beautiful and absolutely necessary book. David Berlinski at his spectacular best.
DAVID GELERNTER, PROFESSOR OF COMPUTER SCIENCE, YALE UNIVERSITY
Science After Babel is a literary triumph. In it, David Berlinski masterfully exposes the hubris of scientific pretensions with a wit that dances deftly between the lines, unveiling profound insights with a refreshing candor. This book testifies to the author’s penetrating intellect, inviting readers to reconsider the limits of scientific authority and reject facile invocations of science that demand assent at the expense of compelling evidence and rigorous thought.
WILLIAM DEMBSKI, MATHEMATICIAN, PHILOSOPHER, AND FORMER HEAD OF THE MICHAEL POLANYI CENTER AT BAYLOR UNIVERSITY; AUTHOR OF MULTIPLE GROUNDBREAKING WORKS ON THE THEORY OF INTELLIGENT DESIGN, INCLUDING THE DESIGN INFERENCE (CAMBRIDGE UNIVERSITY PRESS, 1998)
Berlinski speaks wittingly as an insider to the sciences and their recent history. As a historian-philosopher of science, I recognize numerous valuable insights in this collection of arguments and memories. He captures the wonder of scientific inquiry without misplaced worship of speculative pronouncements made in its name. Berlinski is the most enjoyable antidote to scientism I know.
MICHAEL KEAS, LECTURER IN THE HISTORY AND PHILOSOPHY OF SCIENCE, BIOLA UNIVERSITY, AUTHOR OF UNBELIEVABLE: 7 MYTHS ABOUT THE HISTORY AND FUTURE OF SCIENCE AND RELIGION
Dr. Berlinski explores everything from the complicated spawning behavior of salmon and the problems with the RNA World hypothesis to various acute challenges to modern evolutionary theory, including the Cambrian explosion, molecular machines, and the failure of punctuated equilibrium. As he shows, trouble is brewing for Darwin on other fronts as well — population genetics, taxonomy, behavioral psychology, and the philosophy of biology, to name just a few. In total, Science After Babel is a lively mix of deep scientific knowledge, literary skill, and humor. The work reveals why scientism’s contemporary tower of babel has failed to reach the heavens. I highly recommend the book and hope it is widely read.
OLA HÖSSJER, PROFESSOR OF MATHEMATICAL STATISTICS, STOCKHOLM UNIVERSITY
In Science After Babel David Berlinski takes critical scholarly aim at many current day “scientific truths” — more properly shibboleths — including Darwinism, reductionism, the Standard Model of particle physics, and “talking” chimpanzees; and he shows how much nonsense often passes as secure scientific knowledge. Neo-Darwinism he describes as “empty,” and in discussing the Standard Model he comments wryly, “Theories come and go.” He also takes aim at a vast constellation of recent authors, including cosmologists Brian Greene and Lawrence Krauss, biologist Stephen Jay Gould, and philosopher of biology Michael Ruse.
The book is a delightful read delivered with great wit and erudition. We are treated to unique recollections — of his drinking coffee in Paris with René Thom, the founder of catastrophe theory; of the insane driving, also in Paris, of his friend, the mathematician, polymath, and leading French anti-Darwinist Marcel Schützenberger; and of a conversation with Noam Chomsky. Altogether the book represents an extraordinary and absolutely fascinating tour de force touching on topics as diverse as medieval Islamic astronomy and the great twentieth-century mathematician John von Neumann’s reflections on the role of chance in evolution. The text is interspersed throughout with some beautiful descriptive writing — Mount Rainer’s snow glimpsed flying out of SeaTac was “silent, sweeping, silvery, still, serene.”
The book is a stunning intellectual achievement. Few authors could have written such a far-reaching, in-depth critique of so many current philosophical and scientific beliefs. Science After Babel is mandatory reading for anyone interested in a critical assessment of much current scientific thinking. No other recent publication comes close, and unquestionably this brilliant book establishes David Berlinski as one of the leading intellectuals of our time.
MICHAEL DENTON, PHD, MD, FORMER SENIOR RESEARCH FELLOW IN THE BIOCHEMISTRY DEPARTMENT AT THE UNIVERSITY OF OTAGO IN DUNEDIN, NEW ZEALAND, AUTHOR OF EVOLUTION: A THEORY IN CRISIS, NATURE’S DESTINY, AND THE MIRACLE OF MAN