Search This Blog

Thursday, 22 December 2022

2023: Year of the Darwin Skeptic?

 The Year in Review: Intelligent Design Grows in Influence and Depth 


Each year, as we ask for support for our work from readers of Evolution News, I review the progress the intelligent design program has made in the research, writing, and outreach fields. This past year scientists in our network continued to publish articles in peer-reviewed journals that showcase the predictive and explanatory power of the design framework. Discovery Institute’s Center for Science & Culture published books on topics ranging from artificial intelligence to the miracle of human existence. Leading scientists acknowledged either privately or publicly the weight and substance of design arguments. And a theory of biological design based on engineering principles continued to solidify and expand. There’s a lot to look forward to in 2023 — if we can count on your generous help to make it possible and share it with the world. 

Influencing Leading Scientists 

So let’s review. In 2022, I participated in several conferences and private events in which I interacted with prominent scientists. Several acknowledged the strength of our arguments critiquing the current scientific orthodoxy and defending the evidence for design in life. At a recent conference, I spoke with one of the most recognized and admired evolutionary biologists. In a private conversation, he accepted that the arguments for design based on engineering analyses of living systems were substantive. And during a public lecture, he even tacitly conceded that the information central to life points to design. He stated that he wished to wait for future research to potentially explain the origin of biological information through natural processes. But his tone of voice suggested that he doubted whether such an explanation would ever materialize.

At another meeting, I sat on a panel with one of the leading evolutionary theorists. He stated that standard evolutionary analyses addressing nontrivial transformations typically are severely deficient in their mathematical cogency. He also thanked scholars in the ID network for addressing with rigor and nuance such questions as the rarity of functional protein sequences and the required timescales for generating coordinated mutations. At another conference, top-level biologists affirmed the strength of my arguments for the challenge of evolving new proteins that perform complex tasks. Many still wished to wait for natural explanations for the origin of novel protein structures, but they now much better appreciate the severity of the challenge.  
Life looks designed. But these interactions reminded me that persuading scientists deeply concerned about others’ opinions of them might often prove extremely challenging. And yet, convincing leading scientists with open minds working at elite universities only requires the opportunity of presenting them with the evidence in a safe setting. Stephen Meyer has demonstrated this principle by the endorsements that Return of the God Hypothesis has received from prominent figures including a Nobel laureate physicist. Likewise, Marcos Eberlin demonstrated it by the endorsements his book Foresight received, including three Nobel laureates.  

Theory of Biological Design 

projects moved forward over the past year related to analyzing biological systems from an engineering standpoint. Prominent biomimetics engineer Stuart Burgess published an article in the journal BIO-Complexity that detailed the exquisite highly optimized design of the ankle-foot complex. He also discredited claims that the complex demonstrates poor design. The article parallels the lecture Burgess presented at the Westminster Conference on Science and Faith. 

Another article was recently submitted to a technical journal by a member of the Engineering Research Group (ERG) that describes how applying an engineering modeling tool to molecular machines elucidates their underlying design-logic and reveals deep insights into their operations. Two other members of ERG will submit a similar article related to modeling a metabolic network. Over the next year several additional articles will be submitted to respected scientific journals demonstrating the power of engineering models and principles to advance our understanding of biological systems. These projects represent just a small sample of the research that will commence over the next decade, applying engineering principles and tools to biological investigations.  ERG members are also synthesizing the insights generated by these projects into a comprehensive theory of biological design (TBD). Preliminary components of TBD were presented in the recently published Your Designed Body by Steve Laufmann and Howard Glicksman (here, here). I presented other elements in the recently published book Science and Faith in Dialogue. A free PDF of the book is available for download. This framework will help guide future biologists to expand their understanding of life most effectively, and it will help engineers to best apply the ingenuity seen in life to human creations.  
The evidence for deign in nature continues to reach increasing numbers of people. The Evolution News and Mind Matters news sites served a combined 3.6 million users. Discovery Institute’s YouTube videos received 8.2 million views. Stephen Meyer’s videos at PragerU received over 15 million views. Behind the scenes, ID scientists have developed communication channels with top-level scientists outside our circles who also wish to critically evaluate the scientific status quo about life’s origin and development. Our influence grows and grows despite severe opposition. 

At the same time, scientific research continuously strengthens the design arguments. Origin-of-life experiments continue to highlight the implausibility of natural processes ever generating a minimally complex cell. Rice University chemist James Tour recently launched the second season of his series debunking claims to the contrary. 

Studies of variation and adaptation in numerous species consistently reinforce the fact that evolutionary processes are highly constrained. And advances in systems biology and other biological subdisciplines reveal the same engineering principles used in human engineering employed in life. The differences reflect how life demonstrates far superior design. Our researchers will continue to support and communicate what represents the earliest stages in the next great scientific revolution. Thank you for your support and participation in this important work. Please take a moment now to help keep it going strong in 2023!

Darwinism's failure as a predictive model XVIV

 Darwinism's Predictions

Cornelius G Hunter 


To suppose that the eye,” wrote Darwin, “could have been formed by natural selection, seems, I freely confess, absurd in the highest possible degree.” But Darwin argued that we must not be misled by our intuitions. Given natural selection operating on inheritable variations, some of which are useful, then, if a sequence of numerous small changes from a simple and imperfect eye to one complex and perfect can be shown to exist, and if the eye is somehow useful at each step, then the difficulty is resolved. (Darwin, 143) The key was to identify “a long series of gradations in complexity, each good for its possessor” which could lead to “any conceivable degree of perfection.” (Darwin, 165)
 
But ever since Darwin the list of complex structures in biology, for which no “series of gradations in complexity” can be found, has continued to grow longer. Both the fossil record and genomic data reveal high complexity in lineages where evolution expected simplicity. As one evolutionist explained:
 
It is commonly believed that complex organisms arose from simple ones. Yet analyses of genomes and of their transcribed genes in various organisms reveal that, as far as protein-coding genes are concerned, the repertoire of a sea anemone—a rather simple, evolutionarily basal animal—is almost as complex as that of a human. (Technau) 
Early complexity is also evident in the cell’s biochemistry. For instance, kinases are a type of enzyme that regulate various cellular functions by transferring a phosphate group to a target molecule. Kinases are widespread across eukaryote species and so they must persist far down the evolutionary tree. And the similarity across species of the kinase functions, and their substrate molecules, means that these kinase substrates must have remained largely unchanged for billions of years. The complex regulatory actions of the kinase enzymes must have been present early in the history of life. (Diks)
 
This is by no means an isolated example. Histones are a class of eukaryote proteins that help organize and pack DNA and the gene that codes for histone IV is highly conserved across species. So again, the first histone IV must have been very similar to the versions we see today. An example of early complexity in eyes is found in the long-extinct trilobite. It had eyes that were perhaps the most complex ever produced by nature. One expert called them “an all-time feat of function optimization.” (Levi-Setti, 29) Reviewing the fossil and molecular data, one evolutionist explained that there is no sequential appearance of the major animal groups “from simpler to more complex phyla, as would be predicted by the classical evolutionary model.” (Sherman) And as one team of evolutionists concluded, “comparative genomics has confirmed a lesson from paleontology: Evolution does not proceed monotonically from the simpler to the more complex.” (Kurland) 

References 

Darwin, Charles. 1872. The Origin of Species. 6th ed. London: John Murray.
http://darwin-online.org.uk/content/frameset?itemID=F391&viewtype=text&pageseq=1
 
Diks, S., K. Parikh, M. van der Sijde, J. Joore, T. Ritsema, et. al. 2007. “Evidence for a minimal eukaryotic phosphoproteome?.” PLoS ONE 2.
 
Kurland, C., L. Collins, D. Penny. 2006. “Genomics and the irreducible nature of eukaryote cells.” Science 312:1011-1014.
 
Levi-Setti, Riccardo. 1993. Trilobites. 2d ed. Chicago: University of Chicago Press.
 
Sherman, M. 2007. “Universal genome in the origin of metazoa: Thoughts about evolution.” Cell Cycle 6:1873-1877.
Technau, U. 2008. “Evolutionary biology: Small regulatory RNAs pitch in.” Nature 455:1184-1185. 

The engineering is real.

 Synchronized Swimming in Siphonophores: A Design Worth Imitating

David Coppedge 

Learning more about strange and fascinating creatures could occupy a lifetime. I had heard about siphonophores (“siphon bearers”) but knew little about them. To report on a new paper about their swimming abilities I needed to brush up on their taxonomy, anatomy, physiology, and ecology, so I read articles and watched videos of them in action. As with everything in biology, the closer one looks, the clearer the design: and this one, again, has design worth imitating. 

A Floater to Avoid 

Siphonophores (phylum Cnidaria) are colonial marine organisms exhibiting division of labor: some of the “zooids” (individual members of the colony) provide propulsion; others hunt and digest prey. The best-known siphonophore is the Portuguese man-o’war, known to beachgoers as a jellyfish-like floater to avoid; it has nasty stinging cells strong enough to kill a human: 

But it’s not a jellyfish per se. The bell-shaped jellyfishes with which we are most familiar (phylum Cnidaria, subphylum Scyphozoa) are single individuals. The Portuguese man-o’war is classified in subphylum Hydrozoa, which includes the hydra. Like other siphonophores, it is a colony of individuals with specialized functions. Its distinctive gas-filled, sail-like bladder riding the waves like a Portuguese warship suggested the organism’s name. 


Most other siphonophores — long, rope-like organisms with hairy-looking tentacles and gelatinous bulbs arranged in rows — sit and wait underwater until prey animals like fish and plankton drift into their stinging cells. But siphonophores can swim. In fact, they travel large distances every day. If the fishing is bad, they will move to a better spot. A video taken by a remotely operated submersible for the Nautilus Ocean Exploration Trust shows one purple-colored species swimming leisurely at the bottom of the ocean: 

Its odd shape defied identification at first by the puzzled scientists wondering what it was. That’s understandable, because siphonophores are barely recognizable as animals. Some species can grow to over a hundred feet long (see photo at Smithsonian Magazine). 

Common but Weird and Wonderful 

The common siphonophore Nanomia bijuga is very plentiful in Monterey Bay. A video by the Monterey Bay Aquarium Research Institute of this “weird and wonderful” animal shows its two main sections: a nectosome made up of 5 to 20 nectophores (zooids which do the propulsion), and a siphosome, composed of zooids that sting and digest krill: 

Like other “physonect” siphonophores, N. bijuga has a third part: a “pneumatophore” at the apex of the nectosome. Filled with carbon monoxide gas, the pneumatophore helps keep the colony in a vertical orientation. So numerous and effective are these little predators, they eat more krill per day than all the whales in the bay combined!  


That is remarkable Considering images we have seen of humpback whales gulping big mouthfuls as they lunge with mouth agape into dense swarms of the little shrimp-like crustaceans. Another fascinating fact about N. bijuga is that it participates in the daily migration of plankton (diel vertical migration), descending to 800 meters during the daytime for protection, and up to the surface at night. That’s a lot of swimming for a little foot-long Ironman — a mile a day.  

Jet Propulsion 

Like jellyfish, squid, and octopuses, siphonophores move by jet propulsion. Each nectophore looks like a bubble with a small orifice. The zooid quickly squeezes the bubble, shooting water out to provide thrust, then fills up again. Arranged in pairs along the nectosome, the nectophores cooperate like rowers in a team. One fact about their teamwork fascinated scientists led by Kevin T. Du Clos and Kelly R. Sutherland at the Oregon Institute of Marine Biology, aided by scientists at other institutions including Caltech.  

That fact is that N. bijuga employs both synchronized and asynchronous propulsion: sometimes the nectophores “pull” together, and sometimes they work independently. Why is that, and does it make a functional difference? They published their findings in PNAS: “Distributed propulsion enables fast and efficient swimming modes in physonect siphonophores.” 

Siphonophores are colonial cnidarians that, unlike single jetters such as squids, swim using propulsion from multiple jets, produced using subunits called nectophores. Distributing propulsion spatially provides advantages in redundancy and maneuverability, and distributing propulsion over time enables context-adaptive swimming modes. We use experiments and modeling to compare swimming modes. We show that synchronous swimming produces high mean speeds and accelerations. By contrast, asynchronous swimming consumes less energy. Thus, by simple variations to the timing of thrust production, siphonophores achieve similar functionality to that of fishes, the ability to adapt swimming performance to context. A greater understanding of the benefits of multijet propulsion may also improve underwater vehicle design.  

So once again, we see nature inspiring design by imitation. These scientists found measurable benefits to the travel habits of a lowly, nondescript whatchamacallit. Its ability to get around and migrate a mile a day attracted them to wonder how, and why, with such simple equipment, this organism achieved similar performance to fish. Expecting a reason, they found one: the siphonophore can adapt its “gait” (so to speak) to the needs of the moment: pulling together to escape a predator, but breaking cadence to save energy. It’s something like we see with marching bands, sometimes moving in strict order and sometimes in a “scatter” formation to get into position with less energy.  

Think what the humble common siphonophore’s ingenuity could mean to energy-conscious marine vehicle design: 

Providing specific advice for vehicle design is beyond the scope of this study, but experimental pulsed single jet vehicles that operate within the Reynolds number range this study (SI Appendix, Fig. S1) have been tested (e.g., Re = 1,300–2,700 for (33)), and there are general principles from this study that could be useful for vehicle research and design. Analogously to N. bijuga, a single underwater vehicle with multiple propulsors could use different modes to adapt to context. Our model test cases suggest strategies for tuning the behavior of a vehicle depending on the desired performance characteristics. A propulsion pattern mimicking the asynchronous case—in which thrust is low, and asynchronous—is best if power consumption is the primary concern because it minimizes the cost of transport.  

If speed is more important, the asynchronous-matched case—in which thrust is high and asynchronous—is likely the best because it decreases the cost of transport with only small losses in speed when compared to the synchronous case. Interestingly, the intuitive approach of producing high thrust synchronously (as represented by the synchronous case) may be the least useful, with its primary advantage being high initial acceleration. 

Our results also suggest a general approach to selecting the number of propulsors an underwater vehicle should employ. Swimming speed, efficiency, cost of transport, and synchronous acceleration all improved with increasing colony lengths in our model, but these benefits approached asymptotes for the longest colonies(Fig. 3). For underwater vehicles with few propulsors, adding propulsors may provide large performance benefits, but when the number of propulsors is high, the increase in complexity from adding propulsors may outweigh the incremental performance gains. 

The multijet strategy provides flexibility in the spatial and temporal distributions of propulsion. Multijet swimmers, such as N. bijuga, take advantage of this flexibility to increase their maneuverability, redundancy, and context-specific swimming performance. 

The authors were impressed enough with the animal’s skill, they used the word “design” four times, but evolution zero times. Good thing; trying to figure out the phylogeny of siphonophores is a challenge (Molecular Biology and Evolution). 

The Kicker 

These scientists only focused on the advantages of multijet swimming in synchronous and asynchronous modes, but there’s more. What do these abilities imply? The colony could not do these things without coordination; that implies signaling and quick response by a neural system. The know-how to go where the fishing is good implies sensing systems. The ability to hunt and digest fish implies a digestive system that benefits the community. Foresight is evident in the colony’s ability to stop adding nectophores when the optimum number is reached. 

The design, for sure, proceeds all the way from the whole colony down to each cell, where molecular machines, a genome, and network of parts enables the whole. A siphonophore is, using Douglas Axe’s term, a “functional whole” with design evident at every level. 


It’s quite a show. And like the design plan, the synchronization continues throughout and within every player in the colony — even in the decision to break cadence and go async when that swimming strategy makes the most sense.