Search This Blog

Sunday 17 December 2017

On early Coptic translations re:John1:1

Translating John 1:1: The Coptic Evidence

(Solomon Landers, September 2006)
The Coptic translation of John 1:1
1a. Š„‹‘…Š‚‹‹ŒŠ …Œ}†
1b. }‘Œ}†Š‚‹‹ŒŠŠ}„Ž‰ŒŠ‹‘
1c. }‘Š‘Š‹‘ŒŒ}†
It is becoming well-known that the primary Coptic translations of John 1:1c – the
Sahidic, the proto-Bohairic, and the Bohairic – do not render it “the Word was
God,” as is common in many English versions, but “the Word was a god,” found
notably in the New World Translation.
The significance of this is remarkable. First, the Coptic versions precede the New
World Translation by some 1,700 years, and are part of the corpus of ancient textual
witnesses to the Gospel of John. Second, the Coptic versions were produced at a
time when the Koine Greek of the Christian Greek Scriptures was still a living
language whose finer nuances could be understood by the Coptic translators, so
much so that many Greek words are left untranslated in the Coptic texts. Third,
the Coptic versions do not show the influence of later interpretations of Christology
fostered by the church councils of the 4
th
and 5
th
centuries CE.
The Greek text of John 1:1c says, E
construction that can be literally rendered as, “and a god was the Word.”
Likewise, the Sahidic Coptic text of John 1:1c reads, }‘Š‘Š‹‘Œ
Œ}†, an indefinite construction that literally says “and a god was the Word.”
Coptic grammarians agree that this is what the Coptic says literally. But the
theological presuppositions of certain grammarians do not allow them to be
satisfied with that reading. Just as they attempt to do with the Greek text of John
1:1c, certain Evangelical scholars seek to modify the clear impact of “a god was the
Word.”
But whereas the Greek text allows for some ambiguity in an anarthrous
construction, the Coptic text does not allow for the same ambiguity in an indefinite
construction. Unlike Koine Greek, Coptic has not only the definite article, but the
indefinite article also. Or, a Coptic noun may stand without the article, in the “zero
article” construction. Thus, in Coptic we may find : ŒŠ‹‘ , “the god,”
‹‘Š‹‘, “a god,” or Š‹‘, “god.”
The Sahidic Coptic indefinite article is used to mark “a non-specific individual or
specimen of a class: a morpheme marking an element as a non-specific or individual
or specimen of a class (“a man,” “other gods,” etc.).” – Coptic Grammatical
Chrestomathy (Orientalia Lovaniensia Analecta, 1988), A. Shisha-Halevy, p. 268
Given these clear choices, it cannot but be highly relevant to their understanding of
the meaning of John 1:1c that the Coptic translators of the Greek text chose to
employ the Coptic indefinite article in their translation of it.
Were the Coptic translators looking at John 1:1c qualitatively, as has been
suggested by some scholars in their analysis of the Greek text? That is not likely,
since the Coptic text does not use the abstract prefixes before the count noun for
god, Š‹‘. They were specifically calling the Word “a god,” and only in the
sense that a god is also “divine” can a translation in the order of “the Word was
divine” be glossed from the Coptic text. Whereas “the Word was divine” can be a
legitimate English paraphrase of the Coptic text, it is not the literal reading.
The Coptic evidence is significant given the fact that Bible scholars have roundly
chastised the New World Translation for its supposedly “innovative” rendering, “the
Word was a god” at John 1:1c. But this very way of understanding the Greek text
of John 1:1c now proves to be, not new, but ancient, the same translation of it as
given at a time when people still spoke the Greek that John used in composing his
Gospel.
But what about John 1:18, where the Coptic text has the definite article before
Š‹‘ with reference to the only[-begotten] Son: ŒŠ‹‘Œy•ŽŠ‹‘?
Certain Evangelical scholars have asked, ‘Is it reasonable that the Coptic
translators understood the Word to be “a god” at John 1:1 and then refer to him as
“the god,” or “God,” at John 1:18?’
That is a logical question, but the logic is backwards. Since John 1:1 is the
introduction of the Gospel, the more logical question is ‘Is it reasonable that the
Coptic translators understood the Word to be God at John 1:18 after referring to
him as “a god” at John 1:1c?’
No. Although the Coptic translators use the definite article at John 1:18 in
identifying the Word, this use is demonstrative and anaphoric, referring back to the
individual , “the one who” is previously identified as “a god” in the introduction.

Thus, John 1:18 identifies the Word specifically not as“God,” but as “the god”
previously mentioned who was “with” (“in the presence of,” Coptic: ŠŠ} Ž‰)
God. This god, who has an intimate association with his Father, is contrasted with
his Father, the God no one has ever seen.
A modern translation of the Coptic of John 1:18 is “No one has ever seen God at all.
The god who is the only Son in the bosom of his Father is the one who has explained
him,´as found at
http://copticjohn.com
Being closer in time to the original writings of the apostle John, and crafted at a
time when Koine Greek was still spoken and well-understood, the Coptic evidence
weighs heavily in the direction of those who see in the Gospels a Jesus who is not
God, but the Son of God, a divine being who is “the image of the invisible God,” but
not that Invisible God himself. This one is the Representative of his Father, who

declared the Good News of salvation to mankind, and sanctified his Father’s Name.

Using design to disprove design?

The Origin of Life: Dangers of Taking Research Claims at Face Value
Brian Miller

In  an article here yesterday, I wrote about philosopher Vincent Torley’s critique of my posts related to the origin of life, and I corrected his errors on thermodynamics. Today, I will correct the errors related to the state of origins research. As a general overview, origin-of-life research falls into two categories. The first is experiments that attempt to accurately model the conditions on the early Earth. The classic example is the Stanley Miller experiment which started with a combination of reducing gases (methane, ammonia, and hydrogen) that were believed to exist, and the researchers applied to the mixture electrical discharges. The resulting reactions produced several amino acids, heralded as a major breakthrough.

Unfortunately, scientists later recognized that the early atmosphere was not likely so reducing Instead, it contained a different combination of gases including carbon dioxide. All subsequent experiments conducted with more realistic starting ingredients failed to produce the building blocks of life (amino acids, carbohydrates, nucleotides, and lipids) in significant quantities. An additional challenge for all such experiments, including Miller’s, was that they produced other byproducts that would have caused deleterious cross reactions. Such conditions would have prevented any subsequent stages leading to life. All roads led to dead ends.

The consistent failure of realistic experiments led to a second class which do not attempt to model actual conditions on the early Earth. Instead, they follow what is termed prebiotic synthesis. Origins expert Robert Shapiro outlined the typical process used for RNA in his  analysis of origin-of-life research. Such experiments involve a long series of highly orchestrated steps which include purifying desired products, removing unwanted byproducts, changing physical and chemical conditions, adding unrealistically high concentrations of assisting substances, and other interventions to ensure that the target molecules are achieved.

Attempting to relate such research to actual events on the early Earth leads to an almost comical series of dozens of highly improbable events. Various proposed origins scenarios over the years have involved meteorite showersvolcanos, poisonous gas, and other phenomena coupled to the precise transportation of lucky molecules through a series of multiple subsequent environments while always passing through the perfect intermediate conditions. Torley actually describes just such a fanciful scenario proposed by Sutherland. As an amusing side note, a friend reviewed origins research, and she was not sure if she was reading about scientific theories or the synopsis of the next Michael Bay natural disaster movie. Ironically, such synthesis experiments actually bolster the design argument by demonstrating that the origin of the building blocks of life and their subsequence assembly require substantial intelligent direction.

My previous article described how two of the major obstacles to the origin of life are overcoming the free energy barriers and producing the fantastically improbable configurations of atoms associated with life. The synthetic experiments bypass these challenges through intelligent intervention. As an illustration, the origin of complex molecules such as RNA and lipids must start with high free-energy solutions of reactants. However, the abundance of such sets of molecules under natural conditions drops exponentially with their free energy. Researchers overcome this challenge by starting with highly concentrated solutions of the ideal combination of pure chemicals. Highly concentrating the chemicals artificially  increases their effective free energies, so reactions are driven in the desired direction.

In reality, many of the proposed starting molecules for origins theories would have quickly reacted on the early Earth with other molecules in the environment preventing substantial buildup (See The Mystery of Life’s Origins, Ch. 4). This challenge also holds true for the origination of any  autocatalytic system of reactions which is another essential component for life’s origins. The dilemma is similar to that of an entrepreneur who wishes to start a business to generate a profit, but starting it requires a million dollars for an initial investment. Unfortunately, the entrepreneur is destitute and has no credit for borrowing the needed capital. As a result, he has no way to even take the first step.

The configurational challenge relates to the fact that vast numbers of chemical reactions could take place on the early Earth. However, life’s origin requires that only specific ones proceed while other far more likely ones are blocked. This hurdle relates both to the origin of the building blocks and of cellular metabolism. In addition, in large molecules the atoms can take on numerous configurations, and the right ones are exceptionally unlikely. Shapiro described how the atoms in RNA could form hundreds of thousands to millions of other stable organic molecules. Researchers overcome this challenge by forcing the atoms to achieve the desired arrangements through tightly controlling the reaction steps. Such constraining of outcomes parallels  role of information in constraining messages in information theory. And, the relationship between information and precise causal control in biology was made explicit in the talk by Paul Griffiths at the Royal Society meeting on New Trends in Evolutionary Biology.

To summarize, researchers have shown how the origin of life might proceed through intelligent design, not blind processes.Shapiro illustrates this point beautifully in analyzing the experiments of John Sutherland, but his comments relate to all such experiments.

Reviewing Sutherland’s proposed route, Shapiro noted that it resembled a golfer, having played an 18 hole course, claiming that he had shown that the golf ball could have, through some combination of wind, rain, heating, cooling, dehydration, and ultraviolet irradiation played itself around the course without the golfer’s presence.

In Torley’s article he references several prebiotic synthesis experiments, but he fails to appreciate their irrelevance to the origins problem for the reasons outlined above. For instance, he describes how Sutherland and other researchers used ultraviolet light to help promote reactions leading the life. What Torley missed was that these experiments used a very specific wavelength of light (e.g., 240 nanometers at the ideal intensity for the optimal amount of time to drive the desired reactions. If the experiments had used light mimicking that from the sun hitting the early Earth, they would have failed since other wavelengths would have destroyed the target moleculesThe difference between the use of light in the experiments and the actual sun parallels the difference between the fire from a blowtorch used by a skilled craftsman and an open fire burning down a building.

Torley also describes how different researchers were able to drive key reactions even when they contained contaminants. For instance, Sutherland included a phosphate at the beginning of his experiments designed to create nucleotides. Similarly,  Jack Szostak’s group created vesicles (containers) out of two fatty acids which could house an RNA enzyme (ribozyme), and he added Mg2+ which under other conditions would have prevented vesicles from forming. However, the relevance of these experiments was greatly exaggerated.

The use of such terms as “contaminant” and “messy” is highly misleading. Phosphate is an essential component of the target nucleotide molecules, and Mg2+ was essential for activating the ribozymes. They were able to include these molecules because the experiments were meticulously designed to ensure they would produce the desired outcomes. If molecules were added which would have been abundant on the early Earth (true contaminants), the experiments would have failed. As an analogy, the researchers resemble car owners boasting about how their car engines could function even in the presence of such “contaminants” as gasoline and motor oil. However, if sand and glue were added, the engines would have fared far less well.

Torley mentions one additional class of studies which use simulations to attempt to address origin-of-life challenges. Specifically, he references Nigel Goldenfeld’s research to solve the homochirality problem  — many building blocks of life can come in either a right-handed or a left-handed form, but life requires only one handedness (homochiral). The results from simulation experiments are generally treated with great caution since they can be designed to model any imaginable conditions and to proceed according to any desired rules.

As a case in point, Goldenfeld’s study is based on an  abstract mathematical model and numerical simulations that center on an achiral (mirror image is the same as itself) molecule interacting with the right and left-handed versions (enantiomers) of a chiral molecule to yield another copy of the latter. For instance, the “autocatalytic” reaction could start with one left-handed amino acid and end with two left-handed amino acids. The simulation set the dynamics of the reactions to eventually lead to a pure mixture of one enantiomer.


The main challenge with these results is that the underlying model is completely unrealistic. No chiral building block of life (e.g. right-handed ribose) has been shown to interact with any substance to self-replicate. On the contrary, in all realistic environments mixtures with a bias of one enantiomer tend toward mixtures of equal percentages of both left-handed and right-handed versions. Goldenfeld “solved” the homochirality problem by creating an artificial world that eliminated all real-world obstacles. All simulations that purport to be breakthroughs in origins problems follow this same pattern. Conditions are created that remove the numerous practical challenges, and the underlying models are biased toward achieving the desired results.

The skilled trades;still the smart choice. III