Search This Blog

Wednesday 17 August 2022

College outdated?


Exiting the cave?

 Paul Nelson: Freeing Minds Trapped in a Naturalistic Parabola

Evolution News 


On a classic episode of ID the Future, philosopher of biology Paul Nelson talks with host Andrew McDiarmid about pursuing intelligent design theory in a science culture committed to naturalism. As Nelson puts it here, it’s about trying to communicate with scientists who are trapped in a “naturalistic parabola.” That parabola sets the rule and defines the boundaries for science: naturalistic answers only. And it extends to infinity, so no finite number of objections or counter-examples can force naturalistic scientists out of it. Nelson, however, offers an alternative strategy for drawing them out of the parabola. Download the podcast or listen to it here.

The thumb print of JEHOVAH re: Earth's giants.

 Prior Fitness and Dinosaurs

David Coppedge


How big can animals get on a given planet? Michael Denton has made a compelling case that given a habitable planet the size of Earth, humans must be the right size to have the ability to use fire and create technology (The Miracle of Man, pp. 194-197). Humans appear to have the optimal size for these purposes, with arm lengths and hand shapes appropriate for swinging axes and hauling wood for the controlled use of fire. 


These optima have allowed humans to develop modern technology. Physical laws, he shows, rule out the possibility that we could do all we do if we were as small as ants or as tall as 60-foot giants. “We could be neither fire makers nor metallurgists if we were significantly smaller” than we are, he says.


On the other hand, it is fortunate that the ability to hew wood and mine for ores does not necessitate kinetic forces much greater than those that can be generated by organisms of our dimensions. While significantly larger android beings could exert greater kinetic forces, the design of a bipedal primate of, say, twice our height would be severely constrained by kinetic and gravitational forces and be structurally problematic.


Why? For one, and as discussed in Chapter 9, mass (and weight) increases by the length cubed (L3) while the strength of bone and the power of muscles increases only by the length squared (L2). [Emphasis added.]


If we were giants, we would be at daily risk of shattering our bones into pieces. And that’s not all that physics requires of us. In addition to the right body size and shape, Denton argues that we must live on the right size planet. If Earth were smaller, ants might do fine, but such a planet could not maintain a life-giving atmosphere. If Earth were larger, gravity would “exacerbate the dangers of tripping” for upright bipedal creatures like us. Higher gravity would impose “severe constraints on the capacity of muscles to empower movement and support an upright bipedal stance.” Undoubtedly those constraints would impose ripple effects on all our systems: circulatory, respiratory, metabolic, and everything else.


Design Inference from Bones

What about size limits on big animals, like the giant sauropods? Given Earth’s gravity, are there physical limits to their existence, too? 


We don’t expect to find sauropod technology, but the same physical laws (mass increase with height) apply to them. The giant sauropods like Titanosaurus, Ultrasaurus, and Seismosaurus may have lived close to the physical limits of size on an Earthlike planet. Blue whales grow even more massive but are buoyed by water. Extant whales and large land mammals allow us to test theories about design limitations. What about giant creatures that can only be known from their bones?


Denton says that large land animals reduce the risk of falling (and breaking their bones) by walking on all fours. Even so, falling endangers horses and cows. A two-meter tall man faces 20 to 100 times the force of a fall compared to a two-foot child, he notes. (p. 196) The larger the animal, the greater the danger. The fact that giraffes and elephants can survive to adulthood suggests that their large bodies are well engineered for stability. From reconstructions of dinosaurs, the bipedal ones (like theropods) appeared to have good balance because of their tails, and the quadrupeds also had long tails and big feet for stability. In every case, engineering for stability would require attention to bone density, muscle strength, and kinesthetic sense (e.g., inner ear balance organs). 


Biological Cushions

Scientists at the University of Queensland in Australia applied engineering design principles to the largest land animals that ever lived: the sauropods. They applied what is known about tissue anatomy and physiology of elephants and other extant large animals. Elephants, despite appearing to walk flat-footed, actually walk on their toes. Their heels are cushioned by soft tissue padding made of muscles, tendons, ligaments, cartilage, and sole skin. This padding is a design requirement due to the elephant’s high mass. The Australian team wondered if dinosaurs also required foot pads.


Without having living sauropods available to observe, physiologists can infer things from the data available. Knowing that mass increases by the cube of length, biophysicists can estimate requirements for bone density and muscle strength for the giant dinosaurs. The fossilized bones, though mineralized, provide cross-checks for those inferences to a certain extent. Trackways also inform the diameters and shapes of dinosaur feet. What can’t be checked is the soft tissue padding around the foot bones, which is not preserved in fossils.


The Queensland team, led by Andréas Jannel, inferred that a sauropod would have needed padding in its feet to survive. And since dinosaur foot bones are not homologous to elephant feet, the padding had to be designed differently than the padding observed in the hind foot (pes) of an elephant or rhino. Their open-access paper in Science Advances explains how they inferred foot padding as a requirement.


Our results show that, irrespective of skeletal pedal posture (Fig. 1), all sauropodomorph specimens examined (i.e., representatives of distinct clades and diverse body sizes) would have been unable to support their weight without a soft tissue pad in the pes (Figs. 2 and 3). All skeletal morphotypes without a soft tissue pad resulted in maximum von Mises stresses higher than 500 MPa [megapascals] for all pedal models (up to 5000 MPa as recorded in Rhoetosaurus brownei; Fig. 3). As expected, bone stress increased principally in the shafts of each metatarsal and the most proximal phalanges (Figs. 2 and 3), likely due to the pedal posture, boundary conditions, and the fact that the metatarsals are the longest bones in the sauropod pes. Mechanically, it is highly unlikely that sauropod pedal bones could have withstood bone stresses of this magnitude without failing. This is because sauropod bones have been shown to retain the general structural properties of Haversian bone tissue seen in modern birds and large mammals, indicating that they were most likely subjected to comparable mechanical constraints. In humans and bovids, cortical bone (e.g., such as in the femur) has been evaluated to withstand maximum stress < 150 to 200 MPa (44, 45). Hence, within the context of comparable loading regimes, the mechanical state of each sauropod model examined suggests that all skeletal pedal postures would most likely have resulted in mechanical failure (e.g., stress fractures). This state would have been intensified when subjected to repetitive heavy loadings, as would be expected during normal locomotion, ultimately resulting in fatigue fracture in all digits. Being unable to support or move properly, the high probability of mechanical failure would have had a substantial impact on the animal’s survival.


Thinking Like Engineers 

The team used this reasoning to construct models showing where soft tissue would have been needed for cushioning the foot bones of various sauropod species. That’s thinking like engineers. These scientists, being Darwinists, believe that the engineering was supplied by natural selection. But that’s a story for another time. 


The fact remains that they made a design inference based on physics, fossils, and comparisons with living animals. As Denton argues in his “Privileged Species” books and videos, physical laws constrain what beings are possible on a habitable planet. That humans and other living beings thrive so well, and have thrived through Earth’s history, suggests that prior fitness was designed in the fabric of the earth and the universe. And if that is the case, then it’s not a big leap to reason that the specific forms these organisms took were also crafted according to engineering principles — with some artistry thrown in, too.

Darwinism continues to devolve.

 Mammoth Support for Devolution

Michael Behe


The more science progresses, the more hapless Darwin seems.


In my 2019 book Darwin Devolves I showed that random mutation and natural selection are powerful de-volutionary forces. That is, they quickly lead to the loss of genetic information. The reason is that, in many environmental circumstances, a species’s lot can be improved most quickly by breaking or blunting pre-existing genes. To get the point across, I used an analogy to a quick way to improve a car’s gas mileage — remove the hood, throw out the doors, get rid of any excess weight. That will help the car go further, but it also reduces the number of features of the car. And it sure doesn’t explain how any of those now-jettisoned parts got there in the first place.


The Bottom Line

The same goes for biology. Helpful mutations that arrive most quickly are very much more likely to degrade genetic features than to construct new ones. The featured illustration in Darwin Devolves was the polar bear, which has accumulated a number of beneficial mutations since it branched off from the brown bear a few hundred thousand years ago. Yet the large majority of those beneficial mutations were degradative — they broke or damaged pre-existing genes. For example, a gene involved in fur pigmentation was damaged, rendering the beast white — that helped; another gene involved in fat metabolism was degraded, allowing the animal to consume lots of seal blubber, its main food in the Arctic — that helped, too. Those mutations were good for the species in the moment — they did improve its chances of survival. But degradative mutations don’t explain how the functioning genes got there in the first place. Even worse, the relentless burning of genetic information to adapt to a changing environment will make a species evolutionarily brittle and more prone to extinction. The bottom line: Although random mutation and natural selection help a species adapt, Darwinian processes can’t account for the origins of sophisticated biological systems.


In Darwin Devolves, I also mentioned work on DNA extracted from frozen woolly mammoth carcasses that showcased devolution: “26 genes were shown to be seriously degraded, many of which (as with polar bear) were involved in fat metabolism, critical in the extremely cold environments that the mammoth roamed.” It turns out that was an underestimate. A new paper1 that has sequenced DNA from several more woolly mammoth remains says the true number is more than triple that — 87 genes broken compared to their elephant relatives. The authors write of the advantages provided by destroyed genes (references omitted for readability):


Gene losses as a consequence of indels and deletions can be adaptive and multiple case studies investigating the fate of such variants have uncovered associations between gene loss and mammalian phenotypes under positive selection. In laboratory selection experiments, gene loss is a frequent cause of adaptations to various environmental conditions. Given that we focused on those indels and large deletions that are fixed among woolly mammoths, the majority of these protein-altering variants likely conveyed adaptive effects and may have been under positive selection at some point during mammoth evolution. We did not find specific biological functions overrepresented among these genes (see methods), but many of the affected genes are related to known mammoth-specific phenotypes, such as total body-fat and fat distribution (EPM2A, RDH16, and SEC31B), fur growth and hair follicle shape and size (CD34, DROSHA, and TP63), skeletal morphology (CD44, ANO5, and HSPG2), ear morphology (ILDR1 and CHRD), and body temperature (CES2). In addition, we find several genes associated with body size (ZBTB20, CIZ1, and TTN), which might have been involved in the decreasing size of woolly mammoths during the late Pleistocene.


There’s Lots More

The point is that these gene losses aren’t side shows — they are the events that transformed an elephant into a mammoth, that adapted the animal to its changing environment. A job well done, yes, but now those genes are gone forever, unavailable to help with the next change of environment. Perhaps that contributed to eventual mammoth extinction.


As quoted above, the mammoth authors note that gene losses can be adaptive, and they cited a paper that I hadn’t seen before. I checked it out and it’s a wonderful laboratory evolution study of yeast.2 Helsen et al. (2020) used a collection of yeast strains in which one of each different gene in the genome had been knocked out. They grew the knockout yeast in a stressful environment and watched to see how the microbes evolved to handle it. Many of the yeast strains, with different genes initially knocked out, recovered, and some even surpassed the fitness of wild-type yeast under the circumstances. The authors emphasized the fact of the evolutionary recovery. However, they also clearly stated (but don’t seem to have noticed the importance of the fact) that all of the strains rebounded by breaking other genes, ones that had been intact at the beginning of the experiment. None built anything new, all of them devolved.


Well, Duh

That’s hardly a surprise. At least in retrospect, it’s easy to see that devolution must happen — for the simple reason that helpful degradative mutations are more plentiful than helpful constructive ones and thus arrive more quickly for natural selection to multiply. The more recent results recounted here just pile more evidence onto that gathered in Darwin Devolves showing Darwin’s mechanism is powerfully devolutionary. That simple realization neatly explains results ranging from the evolutionary behavior of yeast in a comfy modern laboratory, to the speciation of megafauna in raw nature millions of years ago, and almost certainly to everything in between.


References

Van der Valk, Tom, et al. 2022. Evolutionary consequences of genomic deletions and insertions in the woolly mammoth genome. iScience 25, 104826.

Helsen, J. et al. 2020. Gene loss predictably drives evolutionary adaptation. Molecular Biology and Evolution 37, 2989–3002.