Search This Blog

Saturday, 31 December 2022

Pi : a brief history.

pi 

mathematics


Alternate titles: π


By the editors of the encyclopedia brittanica 



pi, in mathematics, the ratio of the circumference of a circle to its diameter. The symbol π was devised by British mathematician William Jones in 1706 to represent the ratio and was later popularized by Swiss mathematician Leonhard Euler. Because pi is irrational (not equal to the ratio of any two whole numbers), its digits do not repeat, and an approximation such as 3.14 or 22/7 is often used for everyday calculations. To 39 decimal places, pi is 3.141592653589793238462643383279502884197 

The Babylonians (c. 2000 BCE) used 3.125 to approximate pi, a value they obtained by calculating the perimeter of a hexagon inscribed within a circle and assuming that the ratio of the hexagon’s perimeter to the circle’s circumference was 24/25. The Rhind papyrus (c. 1650 BCE) indicates that ancient Egyptians used a value of 256/81 or about 3.16045. Archimedes (c. 250 BCE) took a major step forward by devising a method to obtain pi to any desired accuracy, given enough patience. By inscribing and circumscribing regular polygons about a circle to obtain upper and lower bounds, he obtained 223/71 < π < 22/7, or an average value of about 3.1418. Archimedes also proved that the ratio of the area of a circle to the square of its radius is the same constant.

Over the ensuing centuries, Chinese, Indian, and Arab mathematicians extended the number of decimal places known through tedious calculations, rather than improvements on Archimedes’ method. By the end of the 17th century, however, new methods of mathematical analysis in Europe provided improved ways of calculating pi involving infinite series. For example, Isaac Newton used his binomial theorem to calculate 16 decimal places quickly. Early in the 20th century the Indian mathematician Srinivasa Ramanujan developed exceptionally efficient ways of calculating pi that were later incorporated into computer algorithms. In the early 21st century computers calculated pi to 62,831,853,071,796 decimal places, as well as its two-quadrillionth digit when expressed in binary (0).



Pi occurs in various mathematical problems involving the lengths of arcs or other curves, the areas of ellipses, sectors, and other curved surfaces, and the volumes of many solids. It is also used in various formulas of physics and engineering to describe such periodic phenomena as the motion of pendulums, the vibration of strings, and alternating electric currents. 

 

Our designed solar system v.chance and necessity

 The fine-tuning of the solar system 


The universe, our galaxy, our solar system, and the Earth–Moon double planet system demonstrate clearly some remarkable evidence of highly intelligent design. If we consider them separately, each characteristic appears to be highly improbable due to random chance. When taken all of them together, the probability of random chance becomes as small as to be impossible. An alternative thought, designed by an intelligent creator is a more realistic explanation to many of the civilized people. In either way, we must admit that we are nothing but a product of a miracle—either a miracle of chance or a miracle of design. 3 

Argument from the formation of the sun in a cluster 

1. Scientists determined that the Sun formed in a cluster of stars containing at least one massive star that died in a supernova explosion.
2. The distance to that supernova must have been close enough to enrich the solar nebula adequately, but not so close that it would have destroyed the disk from which the planets formed.
3. Such fine-tuning indicates design of the solar system that could have been done only by The Supreme Engineer, God.
4. God necessarily exists.

http://kgov.com/fine-tuning-of-the-universe

The Finely Tuned Parameters of the Solar System include:
- Our Sun is positioned far from the Milky Way's center in a galactic goldilocks zone of low radiation
- Our Sun placed in an arm of the Milky Way puts it where we can discover a vast swath of the entire universe
- Earth's orbit is nearly circular (eccentricity ~ 0.02) around the Sun providing a stability in a range of vital factors
- Earth's orbit has a low inclination keeping it's temperatures within a range permitting diverse ecosystems
- Earth's axial tilt is within a range that helps to stabilize our planet's climate
- the Moon's mass helps stabilize the Earth's tilt on its axis, which provides for the diversity of alternating seasons
- the Moon's distance from the Earth provides tides to keep life thriving in our oceans, and thus, worldwide
- the Moon's nearly circular orbit (eccentricity ~ 0.05) makes it's influence extraordinarily reliable
- the Moon is 1/400th the size of the Sun, and at 1/400th its distance, enables educational perfect eclipses
- the Earth's distance from the Sun provides for great quantities of life and climate-sustaining liquid water
- the Sun's extraordinary stable output of the energy
- the Sun's mass and size are just right for Earth's biosystem
- the Sun's luminosity and temperature are just right to provide for Earth's extraordinary range of ecosystems
- the color of the Sun's light from is tuned for maximum benefit for our plant life (photosynthesis)
- the Sun's low "metallicity" prevents the destruction of life on Earth
- etc., etc., etc. 
cloud that forms star and planetary system
Correct number and sizes of planets and planetesimals consumed by star
Correct variations in star’s diameter
Correct level of spot production on star’s surface
Correct variability of spot production on star’s surface
Correct mass of outer gas giant planet relative to inner gas giant planet
Correct Kozai oscillation level in planetary system
Correct reduction of Kuiper Belt mass during planetary system’s early history
Correct efficiency of stellar mass loss during final stages of stellar burning
Correct number, mass, and distance from star of gas giant planets in addition to planets of the mass and distance of Jupiter and Saturn