<iframe width="932" height="524" src="https://www.youtube.com/embed/ZdrZf4lQTSg" title="Special Relativity: This Is Why You Misunderstand It" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
the bible,truth,God's kingdom,Jehovah God,New World,Jehovah's Witnesses,God's church,Christianity,apologetics,spirituality.
Wednesday, 18 January 2023
The animal kingdom's navigators v. Darwin.
Intelligent Design in Animal Self-Location and Navigation
Eric Cassell
While much has been learned about animal navigation methods (see my book Animal Algorithms), not as much is known about how different animals actually determine a reference to the location of “self,” and how they use that information to navigate. It has been known for some time that mammalian brains include basic mechanisms for locating self. These include neurons that are so-called “place cells,” “grid cells,” and head-direction cells.1
Primarily in the Hippocampus
In mammals the self-locating neuron networks are found primarily in the hippocampus. It is theorized that these networks provide support for the ability of animals to form cognitive maps. The initial studies in mammals focused on rats and mice, and identified primarily “static” two-dimensional self-locating mechanisms. More recent studies have been conducted with bats during flight. In that case the self-location is three-dimensional in space. Even more intriguing is that the bat mechanism can be applied on a time continuum, representing past, present, and future. The authors of one study conclude, “These results reveal a positional representation in flying bats that extends along a continuum of space and time and could support a representation of remembered paths.”2 The mechanism may also be the source of a predictive map used in navigating flight paths.
An open question is whether such mechanisms exist in more ancient brain regions of other animals. A new study has identified a self-location mechanism in zebrafish.3 The study found a self-location mechanism in the fish hindbrain, which is the region that controls coordinated physical movements (action patterns) associated with orienting, feeding, and escape mechanisms. The specific function identified in the zebrafish is to enable positional homeostasis, which is a challenge since fish typically have to deal with currents in maintaining a constant position. Fish (as well as some other animals) are able to estimate velocity based on optical flow, which is the rate at which visual objects appear to move. Mathematically, position can be obtained by integrating velocity over time.
Analogous to an Electronic Circuit
One finding from the study is that, “Fish integrate visual flow into a representation of location change and correct for unintended location changes.” There are a number of other significant findings from the Yang study. One is that it is a complex distributed neural network within the brain, meaning it is not restricted to a small number of proximate neurons. The authors also describe this as a “circuit,” analogous to an electronic circuit. The network represents a classical closed loop engineering control system, where feedback is used to adjust and maintain a position. Another finding is that fish have the ability to store locations in memory for 15 to 20 seconds.
Taking a step back and assessing the significance of these recent findings, several observations can be made. One is that they provide more evidence that animal movement and navigation behaviors involve complex algorithms. Some include methods for performing or mimicking mathematical calculations. The algorithms appear to involve complex neural networks or circuits. All of these observations provide more evidence for the engineering design of these behaviors.
From tyrant king to philosopher king?
New Claim: Tyrannosaur Was as Smart as a Monkey
Denyse O' Leary
Vanderbilt University neuroscientist Suzana Herculano-Houzel tells us, in a recent paper, that tyrannosaurs had similar numbers of brain neurons to “primates.”
But how would we know? Herculano-Houzel starts with the assumption that dinosaurs are descended from birds and makes a distinction between the theropod dinosaurs like the tyrannosaur and others:
From that assumption, Herculano-Houzel realized that theropods in particular had a similar correlation between body mass and brain size to pre-impact birds, or basal birds. From there, she used the neuron count of modern birds like emus and ostritches and applied the same rules of scaling to figure out how many neurons theropods like the T-Rex may have had. FRANK LANDYMORE, “IN TERRIFYING NEWS, BIG BRAINED T-REX MAY HAVE BEEN AS SMART AS PRIMATES” AT FUTURISM (JANUARY 9, 2023) THE PAPER IS OPEN ACCESS
In Other Research
Here are a few thoughts from other research:
First, we tend to think of the extinct vertebrate order of dinosaurs as very much like reptiles today and that reptiles cannot be smart. But reptiles today may be smarter than is generally believed. The limits may be practical rather than intrinsic.
Here’s an example: The anole lizard was found to be as capable as the tit (a small bird) in a problem-solving test for a food reward (a grub). But because anoles are exothermic (cold-blooded), they didn’t need many grubs. Not compared with the birds, anyway. Birds are endothermic (warm-blooded). So the anoles had the same problem-solving ability but didn’t need it nearly as often because they can simply shut down their metabolism instead. Of course, dinosaurs may have been endotherms like birds rather than exotherms like reptiles but the difference may not always play out as a difference in intelligence.
Intelligence tests for life forms should probably factor in issues like: How important is it for this life form to solve this problem soon?
Crocodilians (alligators, caymans, crocodiles) have been reported to use sticks as decoys, play, and work in teams.
All it really means is that endothermy and problem-solving intelligence are not the same thing.
And then there is the, by now famous, octopus: The invertebrate controls eight limbs and consequently has a huge amount of brain tissue. Perhaps that allows it to rival mammals in intelligence.
Plausible — Maybe Not Correct
None of this shows that Herculano-Houzel’s hypothesis is correct; only that it is plausible. Predators tend to be smarter than prey, after all, and exotherms can definitely be smart. In any event, the most widely accepted thesis as to why the entire order Dinosauria went extinct is not that they were all stupid but that the planet was hit by an asteroid
NASA keeps track of possible asteroid hits today. We aren’t immune, though we do have a greater chance of creating defenses than the dinosaurs did. Whether or not dinosaurs ever used tools.
You may also wish to read: Even lizards can be smart — if you catch them at the right time. But can we give machines what the lizard has by nature? What is it that we want machines to be and do under our guidance that these — often seemingly strange — life forms are and do spontaneously? The life forms do those things to stay alive. Does it matter then that machines are not alive?