Search This Blog

Thursday 5 January 2023

Darwinism's simple beginning problem 2.0?

 Minimal Complexity Problem in Prey Detection by the Sand Scorpion


In the introduction to the “Waves” chapter of Halliday, Resnick, and Walker’s Fundamentals of Physics (6th edition), the authors mention a remarkable ability of the sand scorpion. Living in the highly arid and hot region of the Mojave Desert, a sand scorpion must hunt its prey at night. Its visual, olfactory, and auditory abilities are minimal, and not sufficient in the nighttime desert to catch prey. Yet, catch they can, with remarkable efficiency. When a beetle comes within a couple of feet, the disturbance that it creates on the sand is detected by the scorpion first to determine 
 direction, then to determine distance. 
         The sand scorpion, like other arachnids, has eight legs. The terminal (“tarsal”) segments of the eight legs form a rough circle. It is at these eight points that the scorpion can detect tiny vibrations, of order 1 Angstrom (the size of a hydrogen atom) in amplitude, that emanate from the prey which is passing by. Detailed studies by Philip H. Brownell of Oregon State University in the 1980s demonstrated that the scorpion detects direction by comparative timing of the disturbance as it passes and is sensed by the legs. The legs that are closer to the prey sense the signal first, by as little as a few microseconds. 

A Spectacular Ability

While this sensitivity is amazing, the most spectacular ability of the scorpion is to detect distance. When the scorpion has established the direction, it will hold completely still. At the next movement of the prey (often beneath the sand at a shallow depth), the scorpion rapidly moves to the location of the origin of the disturbance, plunges its pincers to its estimated location of the prey, and catches it. Once caught, the prey is immobilized by the neurotoxin delivered by the scorpion’s stinger, and its is slowly consumed. 
         Brownell showed that two type of disturbances — longitudinal compression waves, and transverse “Rayleigh” waves — with different propagation speeds, propagate effectively over these types of distances from prey to predator, and that the scorpion uses the different arrival times of the pulses to estimate distance. Brownell’s data indicated that at 15 cm or less, the accuracy of its distance estimates was excellent.

            Irreducible Complexity

But how does the scorpion “know” the propagation speeds of the longitudinal and transverse waves? And how does it know how to calculate the distance? This is a simple freshman physics problem if someone gives you the calibrated speeds. But for a Darwinian theory of the origin of species, it presents an incredible minimal-complexity problem. The minimal ingredients are 1) the sensors (atomic level sensitivity of amplitude, sub micro-second timing, the ability to distinguish transverse and longitudinal pulses), 2) the distance-to-velocity equation with the assumption that the two disturbance types were simultaneously originated, and 3) the calibrated propagation speeds for the two types of disturbances (Rayleigh and Compression waves). 
              Without all three of these innovations in place, the scorpion cannot survive. 

Tito: a brief history.

Josip Broz Tito

Wikepedia 

Josip Broz (Serbo-Croatian Cyrillic: Јосип Броз, pronounced [jǒsip brôːz]; 7 May 1892 – 4 May 1980), commonly known as Tito (/ˈtiːtoʊ/;[2] Serbo-Croatian Cyrillic: Тито, pronounced [tîto]), was a Yugoslav communist revolutionary and statesman, serving in various positions of national leadership from 1943 until his death in 1980.[3] During World War II, he was the leader of the Yugoslav Partisans, often regarded as the most effective resistance movement in German-occupied Europe.[4] He also served as the president of the Socialist Federal Republic of Yugoslavia from 14 January 1953[1] until his death on 4 May 1980.
        He was born to a Croat father and Slovene mother in the village of Kumrovec, Austria-Hungary (now in Croatia). Drafted into military service, he distinguished himself, becoming the youngest sergeant major in the Austro-Hungarian Army of that time. After being seriously wounded and captured by the Russians during World War I, he was sent to a work camp in the Ural Mountains. He participated in some events of the Russian Revolution in 1917 and the subsequent Civil War. Upon his return to the Balkans in 1918, he entered the newly established Kingdom of Yugoslavia, where he joined the Communist Party of Yugoslavia (KPJ). Having assumed de facto control over the party by 1937, he was formally elected its general secretary in 1939 and later its president, the title he held until his death. During World War II, after the Nazi invasion of the area, he led the Yugoslav guerrilla movement, the Partisans (1941–1945).[5] By the end of the war, the Partisans—with the backing of the invading Soviet Union—took power over Yugoslavia.
            After the war, Tito was the chief architect of the Socialist Federal Republic of Yugoslavia (SFRY), serving as the prime minister (1944–1963), president (since 1974 president for life) (1953–1980), and marshal of Yugoslavia, the highest rank of the Yugoslav People's Army (JNA). Despite being one of the founders of Cominform, he became the first Cominform member to defy Soviet hegemony in 1948. He was the only leader in Joseph Stalin's time to leave Cominform and begin with his country's own socialist program, which contained elements of market socialism. Economists active in the former Yugoslavia, including Czech-born Jaroslav Vaněk and Yugoslav-born Branko Horvat, promoted a model of market socialism that was dubbed the Illyrian model. Firms were socially owned by their employees and structured on workers' self-management; they competed in open and free markets. Tito managed to keep ethnic tensions under control by delegating as much power as possible to each republic. The 1974 Yugoslav Constitution defined SFR Yugoslavia as a "federal republic of equal nations and nationalities, freely united on the principle of brotherhood and unity in achieving specific and common interest." Each republic was also given the right to self-determination and secession if done through legal channels. Lastly, Tito gave Kosovo and Vojvodina, the two constituent provinces of Serbia, substantially increased autonomy, including de facto veto power in the Yugoslav parliament. Tito built a very powerful cult of personality around himself, which was maintained by the League of Communists of Yugoslavia even after his death. Twelve years after his death, as communism collapsed in Eastern Europe, Yugoslavia dissolved and descended into a series of interethnic wars.
        Some historians criticize Tito's presidency as authoritarian,[6][7] while others see him as a benevolent dictator.[8] He was a popular public figure both in Yugoslavia and abroad.[9] Viewed as a unifying symbol,[10] his internal policies maintained the peaceful coexistence of the nations of the Yugoslav federation. He gained further international attention as the chief leader of the Non-Aligned Movement, alongside Jawaharlal Nehru of India, Gamal Abdel Nasser of Egypt, Kwame Nkrumah of Ghana, and Sukarno of Indonesia.[11] With a highly favourable reputation abroad in both Cold War blocs, he received a total of 98 foreign decorations, including the Legion of Honour and the Order of the Bath. 

Ann Guager on becoming Ann Guager

 The Evolution of Dr. Ann Gauger

Stephen Dilley

Editor’s note: We are delighted to present a new, occasional series on the “evolution” of top scientists who have helped advance the case for intelligent design.

“It was like the cast of characters from an Illustra Media film.”

That was biologist Ann Gauger’s droll comment on her first visit to Discovery Institute’s offices in Seattle. The year was 2004. Dr. Gauger’s scientific credentials had caught the eye of Stephen Meyer and he had invited her to come talk with him. On the day of the meeting, Gauger arrived and settled into a conference room. In walked Meyer, Jay Richards, and Jonathan Wells — the usual suspects from Illustra films such as Unlocking the Mystery of Life.

The occasion of the meeting went back to two weeks earlier. A friend had recommended to Gauger an article in DI’s newsletter, Nota Bene. The article summarized Steve Meyer’s controversial piece on the Cambrian explosion in the peer-reviewed journal Proceedings of the Biological Society of Washington.1

Gauger had been reading ID literature for some time. She was interested and decided to subscribe to Nota Bene. When she signed up, she included “PhD” after her name. “I wonder what will happen?” she mused.

Twenty minutes later, she received a phone call from Logan Gage, an administrative liaison. Logan went through a checklist. 

“You have a PhD, right?”

“Yes.”

“You’re aware of the Dissent from Darwin list?”

“Yes. In fact, I’ve already signed it.”

A pregnant silence. Then a reply, “Can you send me your CV?” 

Gauger promptly did so. “I wonder what will happen?” she thought again.

Twenty minutes later, Logan was on the phone again. “Can you come in to DI to talk with Steve Meyer?” Nothing was the same after that. 

Evolution as Default

Yet by the time Gauger watched the Illustra movie cast walk into the room at Discovery Institute in 2004, her concerns about evolution had grown. Why? There were many reasons, yet chief among them was the Cambrian explosion.

The fossils of the Cambrian era raised the puzzle that Gauger had pondered while studying invertebrates: how did all of these different body plans emerge? Of the 27 phyla recorded in the fossil record, an astonishing 20 of them emerged during the Cambrian explosion. Only 3 phyla appear before the Cambrian, and only 4 others appear after that era.2 It is the major event within organic history.

Gauger also realized that the neo-Darwinian mechanism lacked the creative power to generate so many new body plans in the time available.3 And even the promise of evo-devo had fallen short. In particular, Gauger was impressed with the Nobel Prize-winning work of Christiane Nüsslein-Volhard and Eric Wieschaus. These geneticists had studied the fruit fly Drosophila melanogaster, mapping its genome and analyzing is early development. They discovered that mutating or perturbing early-acting body plan molecules invariably kills the fruit fly.4 In order to generate a genuinely new body plan, early embryonic changes must take place. Yet for evolution to occur, these changes must be viable rather than lethal. By contrast, Nüsslein-Volhard and Wieschaus observed that early developmental mutants never even hatched as larvae.5 Other problems plagued evo-devo, too.6

Moreover, Gauger’s own research after 2004 helped illuminate key problems for evolutionary theory. Among others, she articulated the causal circularity problem,7 the waiting times problem,8 and the implausibility of human evolution.9 Gauger has also helped to show that a first couple is possible in the context of human origins.10 And more on the way: a volume she has edited on the positive case for intelligent design, by contributors arguing from a Catholic perspective, is just around the corner.11

Full Circle

Gauger recalls with a chuckle her initial meeting with the Illustra cast in 2004. “Steve Meyer walked me through his PowerPoint presentation on the Cambrian explosion. He had the right argument. But I spotted a typo and said so.”

The “typo,” as it turns out, was a technical point about invertebrates. Only someone well-versed in the field would have had that kind of knowledge. Dr. Gauger’s years of research and study had prepared her perfectly for the road ahead.12















Evolution by design v. Design by Evolution?

 Brain Scientist: Consciousness Didn’t Evolve; It Creates Evolution

Denyse o' Leary

In a recent episode of Closer to Truth, Robert Lawrence Kuhn interviewed University of California cognitive scientist Donald Hoffman on a challenging topic, “Why did consciousness emerge?”:

There was a time when there was no consciousness in our universe. Now there is. What caused consciousness to emerge? Did consciousness develop in the same way that, say, the liver or the eye developed, by random mutation and fitness selection during evolution? Inner experience seems to be radically different from anything else. Are we fooling ourselves?

Donald Hoffman is the author of Visual Intelligence: How We Create What We See and coauthor of Observer Mechanics: A Formal Theory Of Perception (Norton, 2000).

A partial transcript and some notes and questions follow:

Robert Lawrence Kuhn: Don, you make the extraordinary claim, backed up by some sophisticated computer simulations that evolution, by favoring fitness, drives truth to extinction. Yeah, how then can we deal with reality and what are the implications of that? (0:19)

Donald Hoffman: It’s such an extraordinary result. It is at first a little bit surprising and you would wonder how could true perceptions be useful? How could it possibly be that true perceptions could guide useful behavior? And fortunately we have a nice metaphor with the advent of computers and laptops and user interfaces that I think can help us to see what’s going on here. (0.41)

If you look at your laptop interface … you might have a blue rectangular icon for a file that you’re working with and that icon might be in the lower right hand corner of your of your screen. Does that mean that the file itself, that you’re working on, is blue or rectangular or in the lower right hand corner of the computer? Well, obviously not. (1.06)…

The whole point of the desktop interface is to hide the truth and to guide your behavior. You don’t want to know about the diodes and the resistors and all the electronics inside there and all the magnetic fields and voltages and all the software. If you had to know all of that stuff you could never paint a picture, you know, edit your photograph or write a paper. So what you want is an interface that hides the complexity that you don’t need to know so that you can do the things you need to do. (2:02)… It’s not lying to you; it’s actually helping you. But it’s helping you by hiding the truth. (2:16)

So evolution has done the same thing for us. It has given us perceptions that are like a user interface (3:06)…

Note: Let’s leave “evolution” out of this for a moment. Here is what we know, irrespective of how we came to know it: All sources of information, however derived, are specific and partial. Through an open window, I see a herd of deer trotting across the parking lot. A sharp-eared neighbor, not near the window, hears their hooves striking the pavement. A small dog in a pen under the window senses the deer by their smell and may even guess their size and sex in some cases. Not one of us sees the whole picture. In the same way, humans, using abstractions, develop symbol systems on computers to represent functions. All information systems necessarily represent information filtered in some way. But — absent any reason to believe that the information provided is erroneous — what does that prove about truth or consciousness? Kuhn picks up on one aspect of this:

Robert Lawrence Kuhn: Now is your metaphor a strong metaphor or have you thought deeply about it? Because that metaphor is enormously powerful in terms of reflecting our lack of capacity of understanding what reality is. I mean, it would be hopeless, it’s impossible to tell from the user interface on a computer, just what the source code is. But all the electronics and the voltages and the capacity and the structure of the CPU… I mean that’s just so far beyond anything that you would even know existed (3:29)

Donald Hoffman: I agree. I mean if someone were to say, I want you to use only what you see on the desktop the pixels and tell me what’s going on and from that figure out a theory about what’s going on inside the computer that’s going to be a really, really tough time… (4:00)

Note: But we don’t need to know everything about how a computer works to use the desktop icons to get us where we need to go, any more than observers need to know much about deer in order to determine whether they are present. Again, all information is necessarily partial and focused and our consciousness enables us to determine the information that we need. To get more information, we formulate a specific question, to which the answer will likewise be partial and focused. To see everything as a whole we would need an unlimited consciousness. That is what many people call God.

Donald Hoffman: Right. So you have to make assumptions, right? So you’re free to make assumptions and I’ll just jump to the assumption I make here to solve the problem. So I don’t take our perceptions of space and time as literally true. I take them as a desktop. (4:19)

To solve the mind–body problem I’ve tried to say, let’s take consciousness as fundamental. So what’s behind the interface is consciousness, right, just like in the example of the computer. what’s behind the screen are all those diodes and resistors and so forth. Yeah, I’m saying what’s behind space and time and physical objects for us is a world of what I call conscious agents or consciousness. (4:41)

The nice thing about that theory is, I’m conscious, you’re conscious. I’m proposing that the objective reality behind this interface is not utterly alien to who I am. There is a chance for me to begin to understand that objective reality behind the interface because I’m not utterly separated from it so it’s a different situation than what’s behind the computer screen so anyway. (5:07)

But what happens when you then ask the, question where your consciousness came from?, because it came through an evolutionary process right? So, when you take this point of view now, if space and time were not fundamental, right, then we have to rethink evolution from the get-go. (5:26)

Note: At this point, we surely do need to rethink evolution from the get-go. Hoffman sounds like an philosophical idealist. He calls his position conscious realism. But according to current evolution theory, consciousness is a randomly evolved illusion created by the brain to help the human animal hunt better. To grant any primacy to consciousness is to imply that the human mind is not simply the user illusion that evolution theory dictates that it must be. How does Hoffman get around that?

Donald Hoffman: So I’ve used Evolutionary Game Theory to conclude that everything that we see around us in our perceptions is not vertical; it’s just a user interface, okay. and that means I have to go back and rethink what do. I mean ,what is the core of evolutionary theory that I can keep? I have to give up some physicalist assumptions that are typically made in evolution, okay? So most evolutionary biologists are also physicalists, of course. But it’s not absolutely necessary to be a physicalist to have the key principles of evolution… [6:08]

Note: Hoffman is offering a hope here, not a present reality. Darwinian evolution (the only currently respectable kind) is and always has been a physicalist theory. Physicalism is precisely what Darwinian evolution defends: mind from mud, via natural selection acting on random mutation. And, to be clear, the “mind” that the process creates is held to be a mere user illusion that enables the human 

Robert Lawrence Kuhn: Yeah, but are you saying that consciousness was there before the process of evolution began? I, you know, I say that with a tremor in my voice. (6:13)

Donald Hoffman: That’s right. Absolutely so. For me to be entirely consistent, if I’m going to actually say that consciousness is fundamental, then I’m saying that the Big Bang itself is something that has to be understood from within a framework in which consciousness is fundamental. The standard view — and I understand that this is completely non-standard, what I’m saying — the standard view is that the Big Bang happened 13.7 billion years ago. Eventually, consciousness kind of arose accidentally here on Earth and maybe other places and totally accidentally, that’s right? So my story is completely different. (6:54)

Robert Lawrence Kuhn: So when I asked the question, how did consciousness emerge through an evolutionary process, your answer is it didn’t. (6:59)

Donald Hoffman: That’s right. Consciousness didn’t emerge from a prior physical process of evolution. Consciousness is fundamental and so we have to rethink the whole history of the universe actually from this point of view, from The Big Bang up through evolution. We have to rethink it in terms of how to rewrite that story, consistent with all of our current science but understanding that it’s … consciousness is fundamental, not the physical universe (7:23)

And, you know, one thing that comes out of this as well is, no one has been able to give a reason for why consciousness would evolve. What is it for? And so my attitude is, it didn’t evolve. It’s the ground from which evolution occurs. (7:38)

Note: Look what happened here: Hoffman starts by trying to align his consciousness theory with standard evolution theory and then just chucks that and says what he thinks: Consciousness didn’t evolve. It’s the ground from which evolution occurs. That’s surely defensible but it’s not, rest assured, the fully materialist theory taught, and enforced by law, in schools. The conflict between observation and accepted theory is one reason why consciousness is, as David Chalmers has put it, a “Hard Problem.“











 organism to survive and spread selfish genes. Incidentally, dissenters from that one and only orthodox view have often been hounded from academic life.