Search This Blog

Showing posts with label education.. Show all posts
Showing posts with label education.. Show all posts

Sunday, 22 January 2023

Grand Central NY: a brief architectural history.

<iframe width="932" height="524" src="https://www.youtube.com/embed/_b4XQUE_u8o" title="Every Detail of Grand Central Terminal Explained | Architectural Digest" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> 

Thursday, 5 January 2023

Tito: a brief history.

Josip Broz Tito

Wikepedia 

Josip Broz (Serbo-Croatian Cyrillic: Јосип Броз, pronounced [jǒsip brôːz]; 7 May 1892 – 4 May 1980), commonly known as Tito (/ˈtiːtoʊ/;[2] Serbo-Croatian Cyrillic: Тито, pronounced [tîto]), was a Yugoslav communist revolutionary and statesman, serving in various positions of national leadership from 1943 until his death in 1980.[3] During World War II, he was the leader of the Yugoslav Partisans, often regarded as the most effective resistance movement in German-occupied Europe.[4] He also served as the president of the Socialist Federal Republic of Yugoslavia from 14 January 1953[1] until his death on 4 May 1980.
        He was born to a Croat father and Slovene mother in the village of Kumrovec, Austria-Hungary (now in Croatia). Drafted into military service, he distinguished himself, becoming the youngest sergeant major in the Austro-Hungarian Army of that time. After being seriously wounded and captured by the Russians during World War I, he was sent to a work camp in the Ural Mountains. He participated in some events of the Russian Revolution in 1917 and the subsequent Civil War. Upon his return to the Balkans in 1918, he entered the newly established Kingdom of Yugoslavia, where he joined the Communist Party of Yugoslavia (KPJ). Having assumed de facto control over the party by 1937, he was formally elected its general secretary in 1939 and later its president, the title he held until his death. During World War II, after the Nazi invasion of the area, he led the Yugoslav guerrilla movement, the Partisans (1941–1945).[5] By the end of the war, the Partisans—with the backing of the invading Soviet Union—took power over Yugoslavia.
            After the war, Tito was the chief architect of the Socialist Federal Republic of Yugoslavia (SFRY), serving as the prime minister (1944–1963), president (since 1974 president for life) (1953–1980), and marshal of Yugoslavia, the highest rank of the Yugoslav People's Army (JNA). Despite being one of the founders of Cominform, he became the first Cominform member to defy Soviet hegemony in 1948. He was the only leader in Joseph Stalin's time to leave Cominform and begin with his country's own socialist program, which contained elements of market socialism. Economists active in the former Yugoslavia, including Czech-born Jaroslav Vaněk and Yugoslav-born Branko Horvat, promoted a model of market socialism that was dubbed the Illyrian model. Firms were socially owned by their employees and structured on workers' self-management; they competed in open and free markets. Tito managed to keep ethnic tensions under control by delegating as much power as possible to each republic. The 1974 Yugoslav Constitution defined SFR Yugoslavia as a "federal republic of equal nations and nationalities, freely united on the principle of brotherhood and unity in achieving specific and common interest." Each republic was also given the right to self-determination and secession if done through legal channels. Lastly, Tito gave Kosovo and Vojvodina, the two constituent provinces of Serbia, substantially increased autonomy, including de facto veto power in the Yugoslav parliament. Tito built a very powerful cult of personality around himself, which was maintained by the League of Communists of Yugoslavia even after his death. Twelve years after his death, as communism collapsed in Eastern Europe, Yugoslavia dissolved and descended into a series of interethnic wars.
        Some historians criticize Tito's presidency as authoritarian,[6][7] while others see him as a benevolent dictator.[8] He was a popular public figure both in Yugoslavia and abroad.[9] Viewed as a unifying symbol,[10] his internal policies maintained the peaceful coexistence of the nations of the Yugoslav federation. He gained further international attention as the chief leader of the Non-Aligned Movement, alongside Jawaharlal Nehru of India, Gamal Abdel Nasser of Egypt, Kwame Nkrumah of Ghana, and Sukarno of Indonesia.[11] With a highly favourable reputation abroad in both Cold War blocs, he received a total of 98 foreign decorations, including the Legion of Honour and the Order of the Bath. 

Sunday, 4 December 2022

Darwinism's failure as a predictive model IV

 Competition is greatest among neighbors 

Cornelius G Hunter 

rwin’s basic theory of evolution, by itself, did not account for the tree-like, hierarchical pattern the species were thought to form. Darwin was keenly aware of this shortcoming and wrestled with it for years. He finally conceived of a solution for why modified offspring would continue to evolve away and diverge from their parents. The principle of divergence, the last major theoretical addition before Darwin published his book, held that competition tends to be strongest between the more closely related organisms. This would cause a splitting and divergence, resulting in the traditional evolutionary tree pattern. (Desmond and Moore 1991, 419-420; Ridley, 378-379)


But no such trend has been observed. In a major study of competition between freshwater green algae species, the level of competition between pairs of species was found to be uncorrelated with the evolutionary distance between the pair of species. As the researchers explained, Darwin “argued that closely related species should compete more strongly and be less likely to coexist. For much of the last century, Darwin’s hypothesis has been taken at face value […] Our results add to a growing body of literature that fails to support Darwin’s original competition-relatedness hypothesis.” (Venail, et. al., 2, 9) The team spent months trying to resolve the problem, but to no avail. As one of the researchers explained: It was completely unexpected. When we saw the results, we said “this can’t be.” We sat there banging our heads against the wall. Darwin’s hypothesis has been with us for so long, how can it not be right? … When we started coming up with numbers that showed he [Darwin] wasn’t right, we were completely baffled. … We should be able to look at the Tree of Life, and evolution should make it clear who will win in competition and who will lose. But the traits that regulate competition can’t be predicted from the Tree of Life. (Cimons)


Why this long-standing prediction was not confirmed remains unknown. Apparently there are more complicating factors that influence competition in addition to evolutionary relatedness. 

References 

Cimons, Marlene. 2014. “Old Idea About Ecology Questioned by New Findings.” National Science Foundation.


Desmond, Adrian, James Moore. 1991. Darwin: The Life of a Tormented Evolutionist. New York: W. W. Norton.


Ridley, Mark. 1993. Evolution. Boston: Blackwell Scientific.

Venail , P.A., A. Narwani , K. Fritschie, M. A. Alexandrou, T. H. Oakley, B. J. Cardinale. 2014. “The influence of phylogenetic relatedness on competition and facilitation among freshwater algae in a mesocosm experiment.” Journal of Ecology, DOI: 10.1111/1365-2745.12271.

Friday, 2 December 2022

More on the fossil record fossil recording to Darwinists dismay.

Fossil Friday: Is Triassic Angiosperm-Like Pollen a Solution to Darwin’s Abominable Mystery? 

Günter Bechly 

In a series of articles (Bechly 2021b, 2021c, 2021d, 2021e, 2022a) and podcasts (Bechly 2021a) I have thoroughly discussed Darwin’s abominable mystery of the abrupt appearance of flowering plants in the Early Cretaceous. I also showed that all alleged pre-Cretaceous fossils of flowering plants have been refuted by experts (Sokoloff et al. 2019, Bateman 2020) as misidentified gymnosperms.


However, there is one remaining issue to address, which is palynology, the science of fossil pollen. Despite their tiny size, plant pollen are extremely durable and well-represented as microfossils throughout the Phanerozoic fossil record, even in sediments that otherwise lack any discernible fossils. Some scientists have described fossil pollen from the Triassic period (252-201 million years ago), which have unique angiosperm characteristics such as a single furrow (monosulcate) and a reticulate-columellar sculpture (Pocock & Vasanthy 1988, Cornet 1989b, Zavada 1990, Doyle & Hotton 1991, Hochuli & Feist-Burkhardt 2004, 2013). This Fossil Friday features microphotographs of angiosperm-like pollen of type 1 from the Middle Triassic of Switzerland (Hochuli & Feist-Burkhardt 2013). These angiosperm-like pollen have been interpreted by some as evidence for a much earlier origin of flowering plants, and you can also find this claim in media reports (Palmer 1994, Anderson 2013, University of Zurich 2013). Even some creationists have uncritically embraced these claims (Thomas & Clarey 2013), because they erroneously believed that it supports their young earth scenario. However, do these claims really hold water at all? 

Flies in the Ointment 

The first fly in the ointment was early considerations that monosulcate pollen from the Triassic of North America may have independently acquired angiosperm-like characteristics (Zavada 1990). The same holds for the angiosperm-like wind dispersal mechanism in a Triassic plant seed, which is “probably representing a case of convergent evolution of a similar structure in a gymnosperm” (Axsmith et al. 2013).


Doyle (2005) mentioned that the angiosperm-like Triassic Crinopolles grains possess a gymnosperm-like thick endexine layer, which is unexpected under common schemes of angiosperm evolution. However, he proposed a new scheme (Doyle 2001), which could make this feature equally likely to be a retained primitive character that was later reduced in angiosperm evolution. He concluded that “more evidence on the plants that produced Crinopolles pollen is needed to determine whether they were angiosperm relatives or an extinct convergent line.” 

Herendeen et al. (2017) reviewed molecular and paleontological evidence for the age of angiosperms and remarked that “angiosperm-like pollen grains with reticulate pollen walls [were] recorded from the Middle and Late Triassic, but so far their botanical affinity remains uncertain.” They concluded that a “critical assessment of these reports shows that, so far, none provide unequivocal evidence of pre-Cretaceous angiosperms.” They cautioned that “it may also be significant that similar reticulate angiosperm­-like grains have not been reported from the Jurassic.” They also cautioned that tricolpate pollen (Eucommiidites) from the Triassic and Jurassic was previously misidentified as angiosperm pollen resembling the extant genus Eucommia, but later was shown “to have been produced by an extinct group of non­-angiosperm seed plants, Erdtmanithecales,” likely related to living gnetophytes (Friis & Pedersen 1996). This is especially relevant, because according to the authors, the Crinopolles not only share with Eucommiidites grains the non-angiosperm-like thick endexine but also a similar unusual distribution of apertures. 

A Disturbing Discrepancy 

Coiro et al. (2019), co-authored by the very James Doyle mentioned before, studied the disturbing discrepancy between molecular clock datings and the fossil record of angiosperms. They found that the sequence of pollen types in the Lower Cretaceous strongly conflicts with any earlier datings for the origin of angiosperms. It would simply make no sense that features which clearly appear in a sequence in the Cretaceous were already present all along in the Triassic, but absent throughout the Jurassic period, and then miraculously reappear in a particular order that suggests a Cretaceous sequential origin. The authors furthermore concluded that “critical scrutiny shows that supposed pre-Cretaceous angiosperms either represent other plant groups or lack features that might confidently assign them to the angiosperms.”


The most recent study by Zavialova & Tekleva (2021) reviewed all the angiosperm-like pollen from pre-Cretaceous deposits that lack angiosperm macrofossils. They concluded: “The general morphology, sculpture, exine ultrastructure, as well as some available data on associations with macroremains allow us to interpret with sufficient confidence an overwhelming majority of such finds as gymnosperm pollen.” That’s pretty unambiguous and finally buries the whole thing. Concerning the remaining finds they likewise clarified: “The finds of Pre-Cretaceous reticulate pollen seem the most controversial; however, those from the Permian are also known from conifer sporangia, and a gymnosperm variant of the endexine was revealed in one of Triassic reticulates.” 

Thus, the alleged Triassic angiosperm pollen fossils just seem to repeat the same pattern of misidentified gymnosperms as the alleged Jurassic angiosperm plant fossils we have discussed in my previous articles. It looks like the strong desire to find what Darwins’s theory would predict strongly biases the interpretations of some experts. Instead, the consistent failure of all these claims should be considered as conflicting evidence and failed predictions that challenge the theory. With all counterarguments now decisively refuted, Darwin’s abominable mystery remains a sting in the flesh of Darwinists, as part of the general inconvenient pattern of abrupt appearances in the fossil record that suggest intelligent design (Bechly & Meyer 2017, Bechly 2021f).


P.S.: The above mentioned studies (e.g., Crane 1987, Herendeen et al. 2017, Coiro et al. 2019) also rejected Triassic macrofossils of supposed angiosperm origin, i.e., Sanmiguelia (Cornet 1986, 1989a), either as misidentified gymnosperms or at least insufficiently justified. 

References 

Anderson N 2013. Flowering Plants May Have Originated Earlier than Previously Thought. SciNews October 2, 2013. https://www.sci.news/paleontology/science-flowering-plants-01427.html

Axsmith BJ, Fraser NC & Corso T 2013. A Triassic seed with an angiosperm-like wind dispersal mechanism. Palaeontology 56(5), 1173–1177. DOI: https://doi.org/10.1111/pala.12049

Bateman RM 2020. Hunting the Snark: the flawed search for mythical Jurassic angiosperms. Journal of Experimental Botany 71(1), 22–35. DOI:https://doi.org/10.1093/jxb/erz411

Bechly G 2021a. Botany Journal Revisits Darwin’s “Abominable Mystery”. ID the Future 1420. https://idthefuture.com/1420/

Bechly G 2021b. Darwin’s “Abominable Mystery”: Still Alive and Kicking. Evolution NewsJune 11, 2021. https://evolutionnews.org/2021/06/darwins-abominable-mystery-still-alive-and-kicking/

Bechly G 2021c. Darwin’s “Abominable Mystery” Is Not Alone: Gaps Everywhere! Evolution News June 12, 2021. https://evolutionnews.org/2021/06/darwins-abominable-mystery-is-not-alone-gaps-everywhere/ 

Bechly G 2021d. Darwin’s “Abominable Mystery”: Jurassic Flowering Plants After All? Evolution News June 14, 2021. https://evolutionnews.org/2021/06/darwins-abominable-mystery-jurassic-flowering-plants-after-all/

Bechly G 2021e. Darwin’s “Abominable Mystery”: Mesozoic Cupules Come to the Rescue? Evolution News June 15, 2021. https://evolutionnews.org/2021/06/darwins-abominable-mystery-mesozoic-cupules-come-to-the-rescue/

Bechly G 2021f. Chapter 31: Does the Fossil Record Demonstrate Darwinian Evolution? pp 345–356 in: Dembski WA, Luskin C, Holden JM (eds). The Comprehensive Guide to Science and Faith. Eugene (OR): Harvest House.

Bechly G 2022a. Fossil Friday: Flowering Plants — Darwin’s Abominable Mystery. Evolution News October 21, 2022. https://evolutionnews.org/2022/10/fossil-friday-flowering-plants-darwins-abominable-mystery/

Bechly G 2022b. Fossil Friday: Florigerminis, Another Failed Candidate for a Jurassic Flowering Plant. Evolution News November 18, 2022. https://evolutionnews.org/2022/11/fossil-friday-florigerminis-another-failed-candidate-for-a-jurassic-flowering-plant/

Bechly G 2022b. Fossil Friday: Florigerminis, Another Failed Candidate for a Jurassic Flowering Plant. Evolution News November 18, 2022. https://evolutionnews.org/2022/11/fossil-friday-florigerminis-another-failed-candidate-for-a-jurassic-flowering-plant/

Bechly G, Meyer SC 2017. Chapter 10. The Fossil Record and Universal Common Ancestry. Pp 331–361 in: Moreland JP, Meyer SC, Shaw C, Gauger AK, Grudem W (eds). Theistic Evolution: A Scientific, Philosophical, and Theological Critique. Wheaton (IL): Crossway, 1008 pp.

Coiro M, Doyle JA & Hilton J 2019. How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytologist 223(1), 83–99. DOI: https://doi.org/10.1111/nph.15708

Cornet B 1986. The leaf venation and reproductive structures of a Late Triassic angiosperm, Sanmiguelia lewisii. Evolutionary Theory 7(5), 231–309.

Cornet 1989a. The reproductive morphology and biology of Sanmiguelia lewisii, and its bearing on angiosperm evolution in the Late Triassic. Evolutionary Trends in Plants 3(1), 25–51. https://www.researchgate.net/publication/284026757

Cornet B 1989b. Late Triassic Angiosperm-Like Pollen from the Richmond Rift Basin of Virginia, U.S.A. Palaeontographica B 213(1–3), 37–87. https://www.researchgate.net/publication/285282538

Crane PR 1987. Review of “The leaf venation and reproductive structures of a Late Triassic angiosperm, Sanmiguelia lewisii” by B. Cornet. Taxon 36(4), 778–779. DOI: https://doi.org/10.2307/1221141

Doyle JA 2001. Significance of molecular phylogenetic analyses for paleobotanical investigations on the origin of angiosperms. The Palaeobotanist 50(1–3), 167–188. DOI: https://doi.org/10.54991/jop 

Doyle JA 2005. Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses, Grana 44(4), 227–251, DOI: https://doi.org/10.1080/00173130500424557

Doyle JA & Hotton CL 1991. Diversification of early angiosperm pollen in a cladistic context. pp. 169–195 in: Blackmore S & Barnes SH (eds). Pollen and Spores: Patterns of Diversity. Systematics Association Special Volume 44. Clarendon Press, Oxford (UK), 391 pp

Friis EM & Pedersen KR 1996. Eucommiitheca hirsuta, a new pollen organ with Eucommiidites pollen from the Early Cretaceous of Portugal. Grana 35(2), 104–112. DOI: https://doi.org/10.1080/0017313960942948

Herendeen PS, Friis EM, Pedersen KR & Crane PR 2017. Palaeobotanical redux: revisiting the age of the angiosperms. Nature Plants 3:17015, 1–8. DOI: https://doi.org/10.1038/nplants.2017.1

Hochuli PA & Feist-Burkhardt S 2004. A boreal early cradle of Angiosperms? Angiosperm-like pollen from the Middle Triassic of the Barents Sea (Norway). Journal of Micropalaeontology 23(1), 97–104. DOI: https://doi.org/10.1144/jm.23.2.9

Hochuli PA & Feist-Burkhardt S 2013. Angiosperm-like pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland). Frontiers in Plant Science4:344, 1–14. DOI: https://doi.org/10.3389/fpls.2013.0034

Palmer D 1994. First flowers emerge from Triassic mud. NewScientist January 29, 1994. https://www.newscientist.com/article/mg14119102-600-science-first-flowers-emerge-form-triassic-mud/ 

Pocock SAJ & Vasanthy G 1988. Cornetipollis reticulata, a new pollen with angiospermid features from the Upper Triassic (Carnian) sediments of Arizona (U.S.A.), with notes on Equisetosporites. Review of Palaeobotany and Palynology 55(4), 337–356. DOI: https://doi.org/10.1016/0034-6667(88)90092-9

Sokoloff DD, Remizowa MV, El ES, Rudall PJ & Bateman RM 2019. Supposed Jurassic angiosperms lack pentamery, an important angiosperm-specific feature. New Phytologist228(2), 420–426. DOI: https://doi.org/10.1111/nph.15974

Thomas B & Clarey T 2013. Pollen Fossils Warp Evolutionary Time. ICR November 27, 2013. https://www.icr.org/article/7836/

University of Zurich 2013. New fossils push the origin of flowering plants back by 100 million years to the early Triassic. ScienceDaily October 1, 2013. https://www.sciencedaily.com/releases/2013/10/131001191811.htm

Zavada MS 1990. The Ultrastructure of Three Monosulcate Pollen Grains from the Triassic Chinle Formation, Western United States. Palynology 14, 41–51.http://www.jstor.org/stable/3687497

Zavialova NE & Tekleva MV 2021. Angiosperm Features in Pre-Cretaceous Pollen. Botanicheskiii Zhurnal 106(7), 627–657. DOI: https://doi.org/10.31857/S0006813621070115 [In Russian with English abstract]. 


 

It's still design all the way down?

 Your Designed Body: “Irreducible Complexity on Steroids”

Evolution News 

On a new episode of ID the Future, Your Designed Body co-author and physician Howard Glicksman talks with host and neurosurgery professor Michael Egnor about Glicksman’s new book, written with systems engineer Steve Laufmann. Glicksman walks through a series of systems in the human body that are each irreducibly complex, and are each part of larger coherent interdependent systems. As Glicksman puts it, the human body is “irreducible complexity on steroids.” How could blind evolutionary processes, such as neo-Darwinism’s joint mechanism of natural selection working on random genetic mutations, build this bio-engineering marvel? Your Designed Body makes the case that it couldn’t. It’s not even close. What is required instead is foresight, planning, and engineering genius  

Download the podcast or listen to it here.


It made Darwin doubt; it makes Darwinists defiant II

 “Lying on the Internet”? Debunking Dave Farina on Stephen Meyer 

Günter Bechly 

I have been reviewing and responding to popular YouTuber Dave Farina’s recent video (Farina 2022) attacking Stephen Meyer and Darwin’s Doubt. This is the third post in my series. Find the first two here and here. I have provided timecodes in square brackets throughout for ease of following Professor Dave’s (as he styles himself) assertions. 


[TC 15:43] Mr. Farina claims that Dr. Meyer’s central thesis is that “Animals appear in the Cambrian explosion with no predecessors! Nothing!” Farina calls this “caught lying on the Internet” and says it exposes one of Meyer’s biggest and most persistent lies. This is ludicrous, as Farina himself admits in the same video that Meyer in Darwin’s Doubt explicitly acknowledges the existence of Precambrian animals like sponges, cnidarians, and even a possible bilaterian (Kimberella). Farina then goes into various cases of alleged Ediacaran animals. This is supposed to debunk Meyer, or rather Farina’s straw man of Meyer’s argument.


[TC 16:54] Farina starts with sponges and cites the biomarker study of Gold et al. (2016) as evidence for Precambrian sponges. First, as I’ve already emphasized, Meyer acknowledges the possible presence of sponges in the Ediacaran and as Farina himself recognized before, Meyer clearly refers to the origin of bilaterian animal body plans as the problem of the Cambrian Explosion. Therefore, fossils of putative sponges, ctenophores, and cnidarians from the Ediacaran are totally irrelevant. However, even these claims are highly disputed. I have discussed and debunked all this evidence for Precambrian sponges (Bechly 2020c). And in a comment on Facebook, Joe Botting, one of the world leading experts on fossil sponges, agreed with the all points in this article (apart from the conclusion to ID). 

In the description of his video on YouTube, Farina links to two new papers (Zumberge et al. 2018, Love et al. 2020), by the same team of authors, about steroid biomarker evidence for Cryogenian animals about 650 mya. Nettersheim et al. (2019) challenged the identification of demosponges as likely producers of the Cryogenian biomarkers because they found these putative typical sponge biomarkers to be common among unicellular organisms (Rhizaria) and concluded that “negating these hydrocarbons as sponge biomarkers, our study places the oldest evidence for animals closer to the Cambrian Explosion.” Love et al. (2020) briefly responded and disputed the results of Nettersheim et al. as possible artifacts and again suggested that demosponges are currently the only known biological source for the found sterane biomarkers. But another even more recent study by Maldegem et al. (2021) demonstrated that these particular steranes can form via geological alteration of common algal sterols. Here is what the press release by the Australian National University (2020) said: “Scientists have resolved a longstanding controversy surrounding the origins of complex life on Earth. The studies found molecular fossils extracted from 635-million-year-old rocks aren’t the earliest evidence of animals, but instead common algae.” Thus, the alleged conclusive evidence for Cryogenian animals has evaporated. Farina is either unaware of the more recent research, and thus did not do his homework, or he is misleadingly cherry-picking older studies to support his case. 

In Search of Ediacaran Animals 

[TC 17:41] Are there Ediacaran animals 635-541 mya? Farina claims that it is in this period that we find the first animal body fossils. This is of course possible, even though controversial even among the mainstream experts, but it is irrelevant unless we were to find bilaterian animals and putative ancestors of the Cambrian bilaterian animal phyla. Here is what Telford et al. (2015) concluded: “Even if bilaterians were tiny in the Precambrian, they would be capable of being preserved in the microfossil record, suggesting that their absence is real.” Meyer cites Budd and Jensen (2003) forcefully pointing out the lack of Precambrian bilaterian fossils: 

As Graham Budd and Sören Jensen state, “The known [Precambrian/Cambrian] fossil record has not been misunderstood, and there are no convincing bilaterian candidates known from the fossil record until just before the beginning of the Cambrian (c. 543 Ma), even though there are plentiful sediments older than this that should reveal them.” Thus they conclude, “The expected Darwinian pattern of a deep fossil history of the bilaterians, potentially showing their gradual development, stretching hundreds of millions of years into the Precambrian, has singularly failed to materialize.” 

[TC 17:50] Farina mentions Lantianella as a putative Ediacaran cnidarian, so not a bilaterian animal but a member of one of the animal groups that Meyer acknowledges to occur in the Ediacaran. But the case for Lantianella as a cnidarian is far from conclusive. Actually, the fossils described as Lantianella were originally considered to be problematica, possible animals, or taphonomic variations of macroalgae (Yuan et al. 2011, 2013). Van Iten et al. (2013, 2014) and Wan et al. (2016) suggested that Lantianella might be a cnidarian animal, but this was only based on the superficially conulariid-like habitus with presence of a holdfast and tentacle-like structures. Therefore, even the latter authors admitted that “these animal interpretations are intriguing possibilities, but definitive evidence for an animal affinity is lacking.” Nevertheless, without further study or arguments, most subsequent authors have tentatively accepted or at least considered this possibility (e.g., Bowyer et al. 2017, Cunningham et al. 2017b, Dunn & Liu 2017, Dzik et al. 2017, Wood et al. 2019, Cordani et al. 2020, Zhao et al. 2021). Of course they did. Why should they question such convenient hypotheses? The recently described alleged Ediacaran cnidarian Auroralumina (Dunn et al. 2022) is very similar to Lantianella, which surprisingly is not even mentioned in this publication. Maverick paleontologist Gregory Retallack, who considers most Ediacaran organisms as terrestrial lichens, suggested in a comment on Facebook that Auroralumina is similar to the podetium and soredia of the living lichen Cladonia chlorophaea. I don’t believe this fringe view either, but it shows how much room for very different interpretations these fossils leave. These organisms may have been conulariid-like cnidarians, or not. It is a lot of guesswork based on superficial similarities of relatively poorly preserved fossils without much in the way of diagnostic features. For the time being, I think that Lantianella and Auroralumina would be better considered as related forms of Precambrian problematica or macroalgae, especially since similar uncontroversial macroalgae abound in the Ediacaran localities from China (Wang et al. 2020). Anyway, as I have already said, Meyer did not dispute the existence of Ediacaran cnidarians and their (potential) existence is irrelevant for his case about the Cambrian Explosion of bilaterian animal phyla. 


[TC 17:54] Concerning the phosphatized animal embryos from Doushantuo, Farina had boldly claimed that Meyer lied about them, but now at least acknowledges briefly that they have been the subject of intensive debate. However, he thinks that Megasphaera, Caveasphaera, Helicoforamina, and Spiralicellula are genuine animal embryos rather than algae or protists. This is based on the recent papers by Yin et al. (2019, 2022), but they only talk about holozoan affinity, total-group metazoans, and metazoan-like development. That’s fine (even though likely wrong), but again irrelevant in the absence of a strong case that these putative animal embryos belonged to bilaterian animals rather than stem animals. There is no such case, though, even according to the champions of the embryo-interpretation. There is wide agreement that the Doushantuo fossils are not crown-group animals (e.g., Butterfield 2011, Kaplan 2011, Chen et al. 2014b) and thus not bilaterians (the bilaterian animal nature of Vernanimalcula was thoroughly debunked by Bengtson et al. 2012). Telford et al. (2015) therefore said that none of the Doushantuo fossils “can be confidently assigned to bilaterians.” But are those fossils even animal embryos in the wider sense at all? 

Like numerous previous studies (see Bechly 2020c and 2020d for a brief review and references), a brand-new study by Zhang & Zhang (2022) strongly disagrees and concludes that Megasphera’s developmental “features are inconsistent with the embryogenesis of living animals, and therefore do not support the metazoan-embryo interpretation.” Tang (2015) reviewed the controversy around the interpretation of Megasphera and the other genera and concluded that they are algae rather than animal embryos. Spiralicellula was first suggested as possible metazoan embryo by Xiao et al. (1998). Just two years later the authors themselves admitted that the interpretation is problematic (Xiao & Knoll 2000). Later studies suggested that Spiralicellula and Helicoforaminacould instead be of algal (Zhang & Pratt 2015) or mesomycetozoan-like protist (Huldtgren et al. 2011) origin. Xiao et al. (2014) suggested that all these genera are likely multicellular eukaryotes but could not decide if they are algae or stem-animals. Cunningham et al. (2017a) concluded that “although the Weng’an Biota includes forms that could be animals, none can currently be assigned to this group with confidence.” Ouyang et al. (2019)therefore still classified Megasphera, Helicoforamina, and Spiralicellula as acanthomorph acritarchs. Farina does not care about such scientific “subtleties” and presents these problematic and highly controversial taxa as proven evidence of Ediacaran animals. 

By the way: Just this year, another of the alleged Doushantuo animal embryos, called Tianzhushania, was debunked and identified as an algal cyst (Moczydłowska & Liu 2022), which is the most likely fate for all the others.


At best a few forms like Caveasphaera could be stem-metazoans with animal-like development (Yin et al. 2019), but this is far from established. New York Times science writer and ardent evolutionist Carl Zimmer was not convinced either and quoted numerous eminent scientists who strongly dispute such an animal affinity (Zimmer 2019). Another scientific study from the same year accordingly classified Caveasphera among acanthomorph acritarchs like the other genera mentioned above (Ouyang et al. 2019). 

Wondering about Acritarchs 

[TC 18:26] Farina mentions a diversification of acritarchs as possible indirect evidence based on co-evolution with eumetazoans. This seems dubious, because we have no clue what acritarchs even are, and which ecological role if any they might have played for early metazoans. Acritarchs are problematic microfossils that could represent an artificial assemblage of algal cysts, moss pollen, and planktonic protists. Farina’s statement is likely based on the study by Peterson & Butterfield (2005), which found no evidence at all for acritarchs as metazoans or for any metazoans. Instead, they simply correlated molecular clock dates for the origin of metazoans, which we know are highly unreliable and disputed, with detected regime changes in the Proterozoic acritarch record, and boldly concluded in favor of co-evolution. That’s hardly science but more like reading tea leaves. Yet even if true, these early metazoans would most likely have been stem metazoans or non-bilaterian metazoans and thus would be totally irrelevant to the Cambrian Explosion. Nothing in this argument explains the abrupt appearance of the bilaterian animal phyla and body plans in the Early Cambrian.


[TC 18:59] Farina also mentions the low-oxygen requirements of sponges and ctenophores (Mills et al. 2018) as relating to the fact that only the ocean surface was oxygenated until the middle Ediacaran. So what? Unlike me, Meyer did not even dispute the existence of Ediacaran sponges and coelenterates like ctenophores and cnidarians. So this is yet another red herring from Farina that has nothing to do with the real problem of the Cambrian Explosion. 


[TC 19:20] Farina refers to the three assemblages of the typical Ediacaran biota that exhibit increasing ecological complexity (Eden et al. 2022): 

Avalon Assemblage 771-555 mya

White Sea Assemblage 560-551 mya

Nama Assemblage 555-541 mya

Apparently, he wants to give the impression that Ediacaran biota progress towards the Cambrian animal phyla. However, this is false. No phylogenetic link has been established between the organisms of these Ediacaran biota and the Cambrian animal phyla, and the very existence of any Ediacaran animals is highly controversial among experts to say the least (see further). 

[TC 19:58] Farina misleads his viewers by claiming that the interpretation of the Ediacaran biota as enigmatic problematics, multicellular protists, fungi, and lichens, was just due to an early lack of knowledge, from the time of their discovery in the 1940s to Stephen Jay Gould’s time in the 1980s. Farina maintains that modern research has changed this picture in favor of an animal interpretation, which he seems to base on Liu et al. (2015).


[TC 20:39] He quotes a study by Wan et al. (2016) on alleged animal fossils from the Lantian Formation in China and does not conceal their admission that Ediacaran candidate animals represent “frustrating cases for animal affinities.” Farina uncritically accepts this study and does not recognize that it is highly problematic. Here is just one example: the authors speculated that Xiuningella could be a bilaterian worm but admitted that alternatively it “could be an epibenthic algal organism, with the bulbous structure being a holdfast, the stalk being a stem, and the cylindrical tube representing a coenocytic siphonous thallus.” Since macroalgae totally dominate the Lantian biota and clear animals are lacking, this seems like a much more reasonable interpretation. The authors even admitted that for all their discussed candidate organisms “definitive evidence for an animal affinity is lacking.” We’ve already discussed in this series the problematic nature of Lantianella, but what if it should indeed be a cnidarian as speculated by Wan et al.? So what? I hate to say it another time, but Meyer has acknowledged the possible existence of Ediacaran cnidarians, so this would be just another one. The problem of the Cambrian Explosion is the abrupt appearance of numerous different body plans of bilaterian animal phyla, and cnidarians are not one of them. Farina is here again shooting down caricatures of Meyer’s arguments, which shows that this wannabe “professor” cannot refute the actual arguments. 

(see here for a precise definition of this technical term of cladistics) of Metazoa or Eumetazoa, and not even a homology within Metazoans has been established. Furthermore, the fractal growth (Seilacher 1992, Gehling & Narbonne 2007) of the Ediacaran frond-like taxa differs from anything we know in metazoans. Taken together, this evidence suggests a convergence and shows that Dunn et al. (2021) definitely presented a case of invalid phylogenetic reasoning even from the viewpoint of mainstream evolutionary cladistics. But I can only repeat the same thing ad nauseam: Even if Charnia were a stem-metazoan, if would contribute absolutely zilch to solving the problem of the Cambrian Explosion of bilaterian animal phyla. 

Please, Not Again 

[TC 22:55] Farina introduces Haootia quadriformis as almost certainly a cnidarian. Please, not again. Meyer acknowledges Ediacaran cnidarians, thus it is irrelevant if there is another one. Maybe Haootia indeed is a cnidarian, but not so fast: A recent paper (Dunn et al. 2022) about Ediacaran cnidarians is not so confident and even excludes Haootia from their phylogenetic analysis because of its uncertain position. This study instead suggested that the new fossil Auroralumina from Charnwood Forest is a putative Ediacaran crown group cnidarian, which is problematic as well (see my earlier comments). Even if Haootia and Auroralumina are Ediacaran cnidarians, they would just confirm what Meyer acknowledged anyway and that does nothing to explain the sudden appearance of bilaterian animal phyla in the Cambrian Explosion. This is getting ridiculous! 

[TC 23:07] Farina shows a screenshot from the study of Evans et al. (2021), which places Tribrachidium, Dickinsonia, Ikaria, and Kimberella in the Eumetazoan tree with the latter two taxa as putative Bilateria. Well, at least the latter two taxa are a bit more interesting as they have been claimed to be bilaterian animals. I discussed this paper in a previous article (Bechly 2021c), and have critically discussed all four genera in great detail in others (Bechly 2018c, 2020b, 2020g, 2021c, 2022e). Therefore, I will refer to those articles and just include a few notes here:


[TC 23:18] Farina first presents Tribrachidium of the extinct phylum Trilobozoa as another stem-eumetazoan, which allegedly was a benthic, sessile, suspension feeder. In my article series on trilobozoans (Bechly 2021c) I showed that the suspension feeder interpretation by Rahman et al. (2015) is dubious and controversial, judging from up-to-date mainstream science that contradicts this interpretation. The authors even admit that the related genera within Trilobozoa or Triradialomorpha “appear to lack the apical ‘pits’ that we hypothesize are key to this method of feeding in Tribrachidium,” which basically debunks their hypothesis as emphasized by McMenamin (2016: 60-62). New research has also revealed the internal anatomy of trilobozoans (Taylor et al. 2017, Zakrevskaya & Ivantsov 2020) and it is incompatible with the suspension feeding hypothesis and unlike any known animal body plans. Many experts therefore still consider the enigmatic trilobozoans as a “failed evolutionary experiment in multicellular eukaryote body plans” (Droser et al. 2017, Hall et al. 2018). Even Rahman et al. (2015) admitted that “Tribrachidium is best understood as a multicellular eukaryote with uncertain relationships to crown Metazoa.” Trilobozoans were very aberrant and clearly not ancestral to any of the Cambrian animal phyla and thus are completely irrelevant for solving the problem of the Cambrian Explosion. 

[TC 23:33] Second in Farina’s list is Dickinsonia, which he introduces as a stem-bilaterian, based on alleged strong ichnological, developmental, and biomarker evidence. The ichnological (trace fossil) evidence is not strong but controversial, and some leading experts think that the alleged traces are just successive imprints of passively drifting specimens (McIlroy et al. 2009), and conclude that “there is no evidence from within material of Dickinsonia from Ediacara, or from any other material yet known, of true escape trails, faecal trails or locomotion traces” (Brasier & Antcliffe 2008). New results suggest that the developmental evidence is not only weak, but actually incompatible with an animal nature for Dickinsonia (Retallack 2022). Another recent study by Runnegar (2022) showed “that the biomarker evidence supports a lifestyle based on poriferan-style phagocytosis rather than bilaterian extracellular digestion.” The absence of a gut was also suggested by the biomarker study of Bobrovskiy et al. (2022). Runnegar also confirmed that at least some dickinsoniids had glide symmetry rather than bilateral symmetry and suggested that “Seilacher’s characterization of them as fluid-filled ‘pneus’ may serve as the current null hypothesis.” Cabey (2020) concluded that “the phylogenetic relationships of the genus Dickinsonia remain still undetermined.” This all supports my critical discussion of Dickinsonia and its rejection as a bilaterian animal (Bechly 2018c, Bechly 2022e). 

symmetry in Cnidaria. Cabey (2020) agrees that “whether Kimberella is a bilaterian or a coelenterate-grade animal is still unresolved.” Again, my critique was recently confirmed by Runnegar (2022), who agreed that Kimberella “might be an animal of cnidarian grade” and even thinks that “it is possible to regard Kimberella as some kind of foraging anemone.” Of course, it is also possible that Kimberella and Yilingia will still turn out to document the existence of two bilaterian groups of uncertain affinity prior to the Cambrian period, as suggested by a very recent biomarker study (Bobrovskiy et al. 2022), which suggested the presence of a gut based on molecular signatures of supposed gut content. However, their unique specializations strongly suggest that they could only represent extinct side branches but could not be directly ancestral to any of the numerous Cambrian animal phyla, and thus do not resolve their enigmatic origin. Meyer in Darwin’s Doubt also discusses Kimberella and generously acknowledges that it could be a bilaterian. What is Farina’s problem, then? Meyer can hardly be blamed for not having discussed Yilingia, which was described years after his book was published. 

The Nama Assemblage 

[TC 24:33] Farina turns to the Nama assemblage and mentions three fossil taxa: Cloudina, Yilingia, and Namacalathus.


[TC 24:48] Concerning the tubular fossil Cloudina he correctly says that it has recently been argued to be likely an annelid. I disputed this attribution in an earlier article (Bechly 2020a) based purely on mainstream science. He immediately acknowledges that other cloudinomorphs were rather attributed to cnidarians, but instead of doubting one of the two attributions, he suggests that cloudinomorphs might not be a natural group of related organisms.


[TC 25:12] He describes Yilingia (Chen et al. 2019) as a segmented bilaterian, possibly either an annelid or a panarthropod. That’s indeed what the paper and the accompanying media reports suggested. However, there is a big problem because annelids (belonging to lophotrochozoans) and panarthropods (belonging to ecdysozoans) are not closely related and their similar body plan is generally considered to be a convergence. This makes it very weak evidence because another convergence could be quite likely. Farina also says that a relationship with panarthropods would be supported by the trilobed structure as in trilobites. However, this structure does not even belong to the ground plan of Panarthropoda and is absent in basal groups such as Cambrian lobopods. Farina seems to get his information from Wikipedia (https://en.wikipedia.org/wiki/Yilingia) and other unreliable sources. Also, the metameric pattern of Yilingia is very different from any known panarthropod or annelid (Evolution News 2019, Bechly 2020b). [TC 25:29] Finally, he claims that Namacalathus appears to be an early relative of brachiopods and bryozoans. I criticized this attribution on many grounds (Bechly 2020e, 2020f, 2021a, 2021b), not the least of which is that brachiopods and bryozoans are of questionable relationship and the homology of the used similarities has been disputed and refuted by the experts even for these two living groups. The phylogenetic attribution of Namacalathus was therefore objectively based on invalid arguments. A lot of nonsense gets published in peer-reviewed scientific articles (just think of the replication crisis) and it requires a bit of expertise to separate the wheat from the chaff and to recognize poor arguments. Farina clearly lacks any expertise to do this. 


Thursday, 1 December 2022

The thumb print of JEHOVAH: Botanic edition.

Viewing Chinese Lanterns in Pittsburgh 

Paul Nelson 

On the day after Thanksgiving, I was viewing Abutilon pictum — commonly known as the Chinese lantern  plant — at Phipps Conservatory and Botanical Gardens, Pittsburgh, PA. While being charmed by its whimsical beauty, I also mused about the genetic coding requirements for the changes in protein expression and timing (during development) to give its precise floral morphology. Psalm 111:2.  


 

Wednesday, 30 November 2022

The fifth dynasty of Egypt: a brief history.

The 5th dynasty (c. 2465–c. 2325 BCE) 




The first two kings of the 5th dynasty, Userkaf and Sahure, were sons of Khentkaues, who was a member of the 4th-dynasty royal family. The third king, Neferirkare, may also have been her son. A story from the Middle Kingdom that makes them all sons of a priest of Re may derive from a tradition that they were true worshipers of the sun god and implies, probably falsely, that the 4th-dynasty kings were not. Six kings of the 5th dynasty displayed their devotion to the sun god by building personal temples to his cult. These temples, of which the two so far identified are sited similarly to pyramids, probably had a mortuary significance for the king as well as honouring the god. The kings’ pyramids should therefore be seen in conjunction with the sun temples, some of which received lavish endowments and were served by many high-ranking officials. 

Pyramids have been identified for seven of the nine kings of the dynasty, at Ṣaqqārah (Userkaf and Unas, the last king), Abū Ṣīr (Sahure, Neferirkare, Reneferef, and Neuserre), and south Ṣaqqārah (Djedkare Izezi, the eighth king). The pyramids are smaller and less solidly constructed than those of the 4th dynasty, but the reliefs from their mortuary temples are better preserved and of very fine quality; that of Sahure gives a fair impression of their decorative program. The interiors contained religious scenes relating to provision for Sahure in the next life, while the exteriors presented his “historical” role and relations with the gods. Sea expeditions to Lebanon to acquire timber are depicted, as are aggression against and capture of Libyans. Despite the apparent precision with which captives are named and total figures given, these scenes may not refer to specific events, for the same motifs with the same details were frequently shown over the next 250 years; Sahure’s use of them might not have been the earliest. 

 Foreign connections were far-flung. Goldwork of the period has been found in Anatolia, while stone vases named for Khafre and Pepi I (6th dynasty) have been found at Tall Mardīkh in Syria (Ebla), which was destroyed around 2250 BCE. The absence of 5th-dynasty evidence from the site is probably a matter of chance. Expeditions to the turquoise mines of Sinai continued as before. In Nubia, graffiti and inscribed seals from Buhen document Egyptian presence until late in the dynasty, when control was probably abandoned in the face of immigration from the south and the deserts; later generations of the immigrants are known as the Nubian C Group. From the reign of Sahure on, there are records of trade with Punt, a partly legendary land probably in the region of present-day Eritrea, from which the Egyptians obtained incense and myrrh, as well as exotic African products that had been traded from still farther afield. Thus, the reduced level of royal display in Egypt does not imply a less prominent general role for the country. 

High officials of the 5th dynasty were no longer members of the royal family, although a few married princesses. Their offices still depended on the king, and in their biographical inscriptions they presented their exploits as relating to him, but they justified other aspects of their social role in terms of a more general morality. They progressed through their careers by acquiring titles in complex ranked sequences that were manipulated by kings throughout the 5th and 6th dynasties. This institutionalization of officialdom has an archaeological parallel in the distribution of elite tombs, which no longer clustered so closely around pyramids. Many are at Giza, but the largest and finest are at Ṣaqqārah and Abū Ṣīr. The repertory of decorated scenes in them continually expanded, but there was no fundamental change in their subject matter. Toward the end of the 5th dynasty, some officials with strong local ties began to build their tombs in the Nile valley and the delta, in a development that symbolized the elite’s slowly growing independence from royal control.


Something of the working of the central administration is visible in papyri from the mortuary temples of Neferirkare and Reneferef at Abū Ṣīr. These show well-developed methods of accounting and meticulous recordkeeping and document the complicated redistribution of goods and materials between the royal residence, the temples, and officials who held priesthoods. Despite this evidence for detailed organization, the consumption of papyrus was modest and cannot be compared, for example, with that of Greco-Roman times.The last three kings of the dynasty, Menkauhor, Djedkare Izezi, and Unas, did not have personal names compounded with “-Re,” the name of the sun god (Djedkare is a name assumed on accession); and Izezi and Unas did not build solar temples. Thus, there was a slight shift away from the solar cult. The shift could be linked with the rise of Osiris, the god of the dead, who is first attested from the reign of Neuserre. His origin was, however, probably some centuries earlier. The pyramid of Unas, whose approach causeway was richly decorated with historical and religious scenes, is inscribed inside with spells intended to aid the deceased in the hereafter; varying selections of the spells occur in all later Old Kingdom pyramids. (As a collection, they are known as the Pyramid Texts.) Many of the spells were old when they were inscribed; their presence documents the increasing use of writing rather than a change in beliefs. The Pyramid Texts show the importance of Osiris, at least for the king’s passage into the next world: it was an undertaking that aroused anxiety and had to be assisted by elaborate rituals and spells