Search This Blog

Sunday 25 November 2018

Brainy cells v. Darwin.

Memory — New Research Reveals Cells Have It, Too
Evolution News @DiscoveryCSC


Without memory, our lives would be exceedingly troublesome, and dangerous if not impossible. What if you had to look up what “green light” means every time you saw one? Many of us have had to witness loved ones suffering from dementia, including its common symptom of short-term memory loss. Human memory is somehow facilitated by the organ of the brain, where Alzheimer’s disease and other forms of dementia take their toll. Cells have no brains. Yet biochemists are increasingly finding that cells do have memory.

Stem Cell Memory

The old picture of stem cells was that they remain pure and static, until signals trigger cell division and differentiation. Ongoing research reveals a new, more dynamic picture of stem cells: cells that can remember things and respond to their surroundings. According to Monique Brouilette in  Quanta Magazine: 

Stem cells, famous for replenishing the body’s stockpile of other cell types throughout life, may have an additional, unforeseen ability to cache memories of past wounds and inflammation. New studies in the skin, gut and airways suggest that stem cells, often in partnership with the immune system, can use these memories to improve the responses of tissues to later injuries and pathogenic assaults.

“What we are starting to realize is that these cells aren’t just there to make tissue. They actually have other behavioral roles,” said Shruti Naik, an immunologist at New York University who has studied this memory effect in skin and other tissues. Stem cells, she said, “have an exquisite ability to sense their environment and respond.” 

Most tissues have small reservoirs of stem cells that can replenish cells as they age or die. They can differentiate into any one of the cell types of the tissue. That’s been their primary function, Brouilette writes, to serve as “miniature factories” for tissue regeneration. It was thought they had to remain “blank slates” that were unchanged from their histories. “But now a new picture is starting to emerge.”


Studies of people with chronic inflammatory diseases led to the discovery of stem cell memory. Stem cells extracted from the nasal cavities of people unable to recover from chronic sinusitis showed activity in the genes for allergic inflammation long after the pathogen was gone. Did these stem cells remember a previous threat? 

The fact that the targeted genes were active in stem cells meant that the stem cells were apparently in direct communication with the immune system. A hunch that this communication might have an effect on the chronic nature of the disease led the researchers to a further set of experiments.


They removed cells from the airways of allergy patients, grew them in culture for about five weeks, and then profiled their gene activity. They found that the genes involved in allergic inflammation were still active, even though the allergic threat of dust and pollen was long gone. In addition, the researchers described many of the cells as “stuck” in a less-than-fully-mature state.

Apparently these stem cells transfer their memories to future generations of cells. This can be a good design feature; it allows the cells to “retain a record of past assaults to sharpen their responses next time.” In the sinusitis patients, however, the stem cells were apparently stuck in a feedback loop, “perpetually signaling to the immune system that an attacker is there,” the scientists deduced. The only way they would do that would be if they had remembered a prior threat and had modified their genomes to deal with it. 

“This opens a new paradigm,” an outside immunologist commented, “where we don’t only focus on the self-renewal potential of these cells but on their potential interaction with their surroundings.” Another said, “we are realizing that cells can be tuned” to adapt to their environment more rapidly and effectively. For instance, inflamed skin on mice that was allowed to heal was found to heal 2.5 times faster the next time at that same spot. The “memory” lasted as long as six months. Moreover, the stem cells also appear to communicate with the immune system to work as a team.


How memory is stored in a cell is not known. It probably involves epigenetic factors, such as the packing of the genes for access, or changes to gene regulators. The picture that is emerging is one of stem cells in a wide range of tissues engaging in “chemical dialogues” with each other, “pooling their information to cope most effectively with changing conditions.”

Whatever the details of those conversations might be, all the evidence points to stem cells playing a central role in helping to make tissues more adaptable by preserving some record of their history.


“It makes more sense that a tissue would just learn from its experience,” Naik said. “That way it doesn’t have to reinvent the wheel every single time.”

Egg Memory

Another discovery about cell memory comes from the University of California, Davis. What researchers there found was an aspect of “oocyte quality control” that involves remembering when daughter cells, on the way to becoming eggs, experienced less-than-optimal repair after DNA damage. Such cells might lead to defective offspring, so as part of the “oocyte selection process,” they are culled early. A gene named Rnf212 signals them to undergo apoptosis (programmed cell death).

In mice, as in humans, developing females initially form very large number of oocytes. Around six million oocytes enter meiosis in humans, but a stunning 5 million are culled by birth. By puberty, the ovaries contain only around 250,000 oocytes, which are steadily depleted until menopause.


This drastic reduction reflects selection for only the highest quality oocytes. Oocytes that experienced defects in meiosis, including damage to their DNA, are culled. Only those that pass through quality control checkpoints can continue and become established in the ovarian reserve.

The selection process includes a “cellular memory” of DNA damage, the press release explains. Slow DNA repair triggers RNF212 to tag these cells so that they become sensitive to apoptosis. The memory has to be able to count to ten:

The researchers found that RNF212 prevents the repair of lingering breaks to create a “cellular memory” of defects that occured in earlier stages of development. This allows the cell to assess how bad the defects were. If the number of unrepaired breaks passes a critical threshold of around ten, the cell is deemed to be of poor quality and undergoes apoptosis. If there are only a few lingering breaks, repair is reactivated and the oocyte is allowed to progress and become part of the ovarian reserve.


“It seems counterintuitive that a cell would actively impede DNA repair, but this is how oocytes gauge the success of earlier events. High levels of lingering breaks means there was a problem and the oocyte is likely to form a low quality egg,” Hunter said.

Having more eggs in the reserve is not helpful if they are of low quality. “Thus, the reproductive system must balance quality and quantity of oocytes for optimal fertility.” Mice without RNF212 tended to have more eggs, because more snuck through the quality-control process. But they were also more at risk of miscarriage and congenital defects in the offspring.

A Programmed Design Feature

The culling process appears to represent a programmed design feature to minimize the effects of mutations. Geneticist John Sanford, who organized the 2014 conference Biological Information: New Perspectives at Cornell (see Synopsis), where Douglas Axe, William Dembski, and Robert Marks spoke, gave a lecture last month to the National Institutes of Health (NIH) about mutational load and genetic entropy (see it on YouTube). Mutations are not increasing fitness, Sanford concludes: they are driving humans extinct. This fits the theme of Michael Behe’s upcoming new book Darwin Devolves  (preorder it here to get the associated free perks).
Without cells having rigorous, multi-part, irreducibly complex systems to repair damage, minimize mutational degradation, and maintain genetic integrity, we likely would not still be here to experience the awe of cellular memory.

Be grateful for your eyes' flawless design.

This Thanksgiving, Be Grateful for the Intelligent Design of Your Eyes
David Klinghoffer | @d_klinghoffer

With Thanksgiving falling this week, if you’re looking for one more thing to express gratitude for, look no further than…your eyes.




We take them for granted, but our ability to interact with the world through vision is beyond remarkable. At the same time, the eyes are an evolutionary icon, in two senses. In a powerful short video written and directed by our old colleague Rachel Adams, we consider the scientific evidence around the question of eye evolution.

Darwin expected that eyes must have developed from simple forerunners through the usual (hypothesized) series of gradual steps. But at the Cambrian explosion some 530 million years ago, we find clear evidence of both compound and camera eyes already in use by creatures among the first animals in the fossil record. BOOM: There they are.

To deal with and demote the exquisite sensitivity of our vision — the ability to detect a single photon — Darwinists claim that vertebrate eyes are built backwards in testimony to the haphazard ways of evolution. But as biologist and  Zombie Science author Jonathan Wells explains, evolutionists are working with outdated science. It’s not ID proponents, but entirely mainstream research, that increasingly reveals the optimal design of our eyes.

On saving it for marriage.

Couples who wait report better sex lives
The Globe and Mail

First comes love, then comes marriage. Where should sex fit in?
Couples who wait until they are married to have sex appear to be much happier  than those who race to get it on, according to a new study in the American Psychological Association's Journal of Family Psychology.
The study was based on 2,035 married individuals who participated in an online assessment, which included questions such as, "When did you become sexual in this relationship?"
A statistical analysis of participants showed that couples who wait until they put a ring on it enjoy significantly more benefits than those who had sex earlier: relationship stability was rated 22 per cent higher; relationship satisfaction was rated 20 per cent higher; sexual quality of the relationship was rated 15 per cent better and communication was rated 12 per cent better.
"There's more to a relationship than sex, but we did find that those who waited longer were happier with the sexual aspect of their relationship," lead study author Dean Busby, a professor in Brigham Young University's School of Family Life, said in a release.
Why does waiting produce these benefits?
"I think it's because they've learned to talk and have the skills to work with issues that come up," Prof. Busby said.
The benefits were about half as strong for couples who became sexually involved later in their relationship but before marriage, according to the release.
If you're thinking it's because couples who choose to wait do so because of religious beliefs - and those are responsible for all the extra happy feelings - you're wrong. The study's analysis controlled for religion.
"Regardless of religiosity, waiting helps the relationship form better communication processes, and these help improve long-term stability and relationship satisfaction," Prof. Busby said.

Proverbs5:18,19 "Let thy fountain be blessed: and rejoice with the wife of thy youth.
19 Let her be as the loving hind and pleasant roe; let her breasts satisfy thee at all times; and be thou ravished always with her love."

On saving it for marriage II:Non-theist edition

7 Reasons Why Atheists Wait Until Marriage

August 14th, 2011 by 
Why on earth would an atheist ever choose to wait until they were married to engage in the wonderfully pleasurable world of sex!? Well I happen to be an atheist and I happen to have decided to wait until I’m married. Does this make me crazy? Maybe. But here’s a list of 7 very sane, very logical reasons that suggest otherwise.

1. Logic



Logic might seem like a strange reason for a person to wait until they’re married but when we examine the statistics it makes much more sense. Couples that do wait have only a fraction of the divorce rate that others do. I personally think divorce would be a miserably unpleasant thing to experience and would like to increase my chances of a successful union wherever I can. Couples who wait also enjoy better communication, rank their relationships as more fulfilling, and even claim to enjoy BETTER SEX. If I’m being perfectly honest, anything that even slightly promises better sex in a lifelong partner seems worth pursuing. So looking at things objectively it does make sense to wait.

2. Setting an Example


Although sex is a private thing, your decision to wait doesn’t have to be. In fact you can use your decision to influence others you care about. According to the statistics mentioned above anyone who waits has a better chance at a successful marriage. I personally want my own children and even my siblings and friends to have the best shot at a happy marriage possible. I have a little sister and I don’t want her to grow up seeing her brothers sleep their way through the local population. Others that are inspired by you will hopefully go on to inspire their own children and friends. It feels good to set such a positive example!

3. Healthy Self Image


Does sex make you feel better about yourself? I have no idea. What I do know is that many people do look for sex for the self-esteem boost it can provide. Knowing what you want in life (such as a strong relationship) leads to higher self-awareness and in turn a higher self-esteem. If you know yourself then it’s highly unlikely that you’ll feel the need to seek out sexual relationships for a pick me up. Having control over your image is a powerful thing indeed. It gives you the razor sharp focus you need to pursue other goals like education, a career, and meaningful relationships.

4. Rebellion!



I personally love this reason. In a culture that is steeped in cheap sleazy dime-a-dozen sex I like to be the one that smirks at everyone else. I go to the same bars and clubs as everyone else does but when I see them all grinding like rabbits in heat I can take pride in the fact that I am not one of them. Nonreligious individuals are already rebelling against something so it’s only natural that they would withdraw even further from the majority.
(Or as a modern philosopher put it "it's hip to be square.")

5. Respect


Respect goes two ways. The first is the idea that I respect my future wife (even though we’ve probably never met) enough that I want her to take solace in the knowledge that I am all hers. I think most girls would agree that a guy who has waited for them is pretty cool. That goes both ways. Guys will think it’s pretty awesome too! The second reason I abstain out of respect is because most girls are going to be someone’s future wife! I respect those will-be unions enough to not interfere. Plus I don’t want guys pushing themselves on my wife to be!

6. Idealism


One definition of idealism states, “conforming to an ultimate standard of perfection of excellence; the idea of something that is perfect; something that one hopes to attain.” While idealism is a highly romantic notion, it is universally shared by people that are waiting, religious or otherwise. We all are seeking that perfect union, that ultimate standard of perfection. The idea of ‘the one,’ a single person that will compliment you better than anyone else is highly idealistic. While a person may experience love in many relationships throughout their lives reserving physical intimacy for only one of those loves places it above the rest.
Dedicating one’s life to an ideal — especially one that aims to make another person feel so special — is a very unique and selfless choice. It will make whoever chooses to follow this path feel like they are on a quest. While it will not be easy eventually the person they wind up with will love them all the more for it.

7. Poetry




While this may seem very similar to idealism it is really the essence of the ideal mind. Poetry is the heart and soul of waiting. It is the romance, the true love, the life partner; these things all sing poetry. Living a poetic life is to live for beauty itself. When we see elderly couples holding hands we can’t help but sigh. It is comforting to see two people, so in love, after so much time. Beauty is inspirational and for this reason more than any others on this list is why someone who is nonreligious might choose to wait. Without the ideal of heaven, and the everlasting love of an eternal father there isn’t a whole lot of beauty left in the world. Except for one thing. Love.

On saving it for Marriage III:The gold standard

Benefits in Delaying Sex Until Marriage
Happier Marriages, More Satisfying Sex Among the Perks, Study Finds
By Bill Hendrick
WebMD Health News Reviewed by Louise Chang, MD
WebMD News Archive

What’s more, couples who delay sex until their wedding night have more stable and happier marriages than couples who have premarital sex, according to the study, which appears in the Journal of Family Psychology.

The study involved 2,035 married participants in an online assessment of marriage called “RELATE.” According to the study, people who waited until marriage:

rated sexual quality 15% higher than people who had premarital sex
rated relationship stability as 22% higher
rated satisfaction with their relationships 20% higher

The benefits were about half as strong for couples who became sexually active later in their relationships but before marriage.

Developing Relationship Skills

“Most research on the topic is focused on individuals’ experiences and not the timing within a relationship,” study author Dean Busby, PhD, a professor in Brigham Young University’s School of Family Life, says in a news release. “There’s more to a relationship than sex, but we did find that those who waited longer were happier with the sexual aspects of their relationship.”

It may be that couples report greater satisfaction and sexual quality if they’ve waited because the extra time gives them longer to learn about each other and develop the skills necessary for good relationships, Busby says.

About 92% of the respondents had attended college, 32% completed some college, 24% obtained a bachelor’s degree, and the average age was 36. The majority of the couples had sex within two months of starting to date, while 16% delayed intercourse until marriage.

Prioritizing Sex at Start of Relationship May Not Be Optimal

Mark Regnerus, PhD, of the University of Texas, who wasn’t involved with the study, says it suggests to him that couples who “prioritize sex promptly at the outset of a relationship often find their relationships underdeveloped when it comes to the qualities that make relationships stable and spouses reliable and trustworthy.”He is the author of a forthcoming book titled “Premarital Sex in America,” being published by Oxford University Press.

Busby and colleagues controlled for the influence of religious involvement in their analysis because it often plays a role on when couples choose to initiate sex. “Regardless of religiosity, waiting helps the relationship form better communication processes, and these help improve long-term stability and relationship satisfaction,” Busby says.

The study says 21% of respondents were Catholic, 39% Protestant, 6% Latter-Day Saints (Mormon), 17% members of “another religion,” and 17% who indicated no religious affiliation. The authors write that sexual intimacy in the early stages of dating is sometimes viewed as an important part of testing compatibility, and determining whether a relationship would work later on.



But the researchers say their findings are clear, that “the longer a couple waited to become sexually involved, the better that sexual quality, relationship communication, relationship satisfaction and perceived relationship stability was in marriage ...”

Higher Ed demystified?

Toward a theory of devolution II

Devolution: Getting Back to the Simple Life
Denyse O'Leary

As we have seen already in this series, evolution can occur via horizontal gene transfer and epigenetics, both of which add information to a life form by non-Darwinian means -- that is, not by natural selection acting on random mutation of the genome.The information added by epigenesis and horizontal gene transfer is not random. For example, assume that male parents' alcoholism is consistently associated with disrupted patterns in children's genes. The effects of excess alcohol, far from being random, are a predictable, law-like chain of chemical cause and effect. Similarly, bacteria don't randomly share antibiotic resistance via horizontal gene transfer. Rapid development of resistance among whole colonies is a longstanding, law-like pattern that maintains a colony's ecology, a pattern recently traced back to millennia before humans began to develop antibiotics.

Today, we often hear that these non-random mechanisms of evolution are consistent with Darwinian evolution (the Modern Synthesis). So, nothing has really changed after all!

Not so fast. Darwinian evolution (Darwinism) had better be consistent with all demonstrated mechanisms of change. Unlike horizontal gene transfer, it has proven difficult to witness, and proponents have relied largely on the assumption that it is "the only known theory that is in principle capable of explaining certain aspects of life." What's changed is that it can no longer be considered equivalent to "evolution." It must compete with other known mechanisms.

Most of the time, when we think of evolution, we mean mechanisms for the growth of complex new information. After all, entropy (the tendency for disorder to increase over time) can satisfactorily explain loss of information. Yet, in the history of life, some forms survive while -- or even by -- losing information (devolution). Their history may tell us something useful too.

We all know devolution when we see it -- a jar of pennies becomes a doorstop, a computer becomes a boat anchor, the XYZ volume of the Encyclopedia props up a too-short table leg.

But interest in devolution of life forms spiked with the recent discovery of giant viruses, which a 2014 editorial at The Scientist considered a possible fourth domain of life.

The giant mimivirus for example, unlike conventional viruses, "carries many genes thought to be unique to cellular life, suggesting that it evolved from a cell."
If so, strictly speaking, it "devolved" from a cell. Information was lost, not gained. Perhaps the unicellular life form was unable to survive intact, but some remnant survives as a virus.

New Scientist announced in 2011 that, "World's largest virus proves giants came from cells." The idea is a reasonable one, though some, including National Geographic, now think that giant viruses preceded cells instead. We don't really know as yet.

The viruses have, however, infected researchers with incorrect thoughts. A discoverer of a giant virus encased in ice for 30,000 years observed (2014):

"We thought it was a property of viruses that they pack DNA extremely tightly into the smallest particle possible, but this guy is 150 times less compacted than any bacteriophage [viruses that infect bacteria]. We don't understand anything anymore!"
Didier Raoult, the discoverer of giant Marseillevirus said, provocatively, in 2009, "The idea of a common ancestor makes no sense in the light of viruses. That was Darwin's idea, but he was clearly wrong." Raoult, also the discoverer of the mimivirus (2003), considered "the most productive and influential microbiologist in France" according to Science, published a pop science book in 2011 that "flat-out declares that Darwin's theory of evolution is wrong."

Well, here are some things we can be reasonably sure of:

-- Sometimes, devolution offers an apparent advantage. Many plankton microbes eliminated the genes for producing key vitamins, and now outsource the function. One account suggests, "... most of the time, the fitness advantages of smaller genomes and lower cell replicating costs offset the potential fitness gains that would come from vitamin manufacture when the required nutrients are in short supply." Similarly, while functioning cell walls are thought to be critical to life forms, we are told that many bacteria can switch to a cell wall-deficient "L-form" state, "completely resistant to many antibiotics," and possibly ignored by our immune systems.

-- Similarly, some researchers believe that the Amanita mushroom group has devolved to a successful parasite on trees by losing the genes associated with breaking down cellulose. It's possible that the Amanitas were crowded by ground-level competitors and devolution enabled them to exploit a new niche.

-- Sometimes, however, the advantage is not clear. A brain part, the anterior sclerite, present in arthropods of 500 million years ago, is no longer extant. It is thought to be linked with bulbous eyes, but without further information, it's impossible to say why it is apparently no longer required.

-- Similarly, the Cambrian shrimp's heart (520 mya) was more complex than the modern one: "The level of complexity of the Fuxianhuia was extremely high, considering that we are studying some of the oldest animals on Earth." A 305-million-year-old harvestman (spiderlike arachnid) fossil has two sets of eyes (pictured above), but current descendants have one functional pair and one vestigial pair, apparently without suffering any adverse effect. But we would need to know much more than we do about the history of life to know why decreasing complexity was neutral or advantageous in each case.

-- One devolved amphibian is visually almost indistinguishable from an earthworm. Similarly, a newly discovered blind, legless lizard is described as having "evolved to live underground," though again, that should really be devolved.

-- Sometimes a pattern emerges. A study that investigated evolution in nematode worms, including the strain that survived the 2003 Columbia space shuttle crash, shows that under artificially stressed lab conditions, the worms all lost the same gene.

In some cases, particular aspects of Darwinian evolution have proved false by discoveries of devolution. One Darwinian doctrine, called Dollo's Law, formulated about 1890 by Belgian paleontologist Louis Dollo, states that a trait once lost cannot be regained.

No one seems to have told the life forms about it. For example, researchers were surprised to find one creature:

... in the aquifers beneath the Western Australian desert, which challenges the traditional Darwinian view of evolution. They have discovered that a species of blind predatory water beetles -- living underground for millions of years -- express vision genes (opsin) which are usually only found in species with eyes.
Losses can be reversed. Blind Mexican cavefish are considered an excellent model for studying evolution, with revealing results. In the lab, researchers have mated blind cave fish from separate and distant underwater caves and produced sighted offspring. Apparently, separate mutations had produced the blindness, and some hybrid offspring inherited a mix that includes enough genes for functioning sight. So no irrevocable devolution had taken place after all.

We are told that, with "dwindling evidence for the law-like nature of Dollo's Law" opinions are reversing because "large genomics databases and evo-devo studies are showing how the underlying developmental pathways and genetic architecture can be retained after the loss of a character."

Evolutionary biologists still have an odd relationship with devolution, to judge from items in Scientific American over the last two decades. First, we encounter obfuscation:

From a biological perspective, there is no such thing as devolution. All changes in the gene frequencies of populations -- and quite often in the traits those genes influence -- are by definition evolutionary changes.
...

Another misconception is that increasing complexity is the necessary outcome of evolution. In fact, decreasing complexity is common in the record of evolution. For example, the lower jaw in vertebrates shows decreasing complexity, as measured by the numbers of bones, from fish to reptiles to mammals. (Evolution adapted the extra jaw bones into ear bones.) Likewise, ancestral horses had several toes on each foot; modern horses have a single toe with a hoof.

This approach doesn't quite make sense. It fudges the fact that loss and gain of information are not the same thing. Loss needs no explanation other than entropy; gain requires new sources of complex, specified information.

Even writers in the same publication seem to contradict themselves about the existence of devolution. In 2012, a Scientific American blog reported on a new study that argued humans are devolving so as to be dumber: "Homo (Sans) Sapiens: Is Dumb and Dumber Our Evolutionary Destiny?"

Gerald Crabtree, a biologist at Stanford University, has put forward a provocative hypothesis that our cushy modern existence -- absent the ceaseless pressures of natural selection experienced during the Paleolithic -- makes us susceptible to the slow creep of random genetic mutations in the 2,000 to 5,000 genes needed to ensure that our intellectual and emotional makeup remains intact.
Others, we were told, disagree with Crabtree: The social world we live in is complex, so "we haven't in fact lost the selection process that kept the pressure on" to remain intelligent. But if Darwinian natural selection both produces high intelligence, and is needed to sustain it, why did it work only once, for humans? And does anyone really believe that social rejection today is the same as the life-and-death struggles of the Paleolithic?

In 2014, Scientific American, on a more serious note, informed us, with respect to those blind cave fish:

In the classic view of evolution, organisms undergo random genetic mutations, and nature selects for the most beneficial ones. A recent study in Science adds a twist to that theory: variability already present in a population's genome may remain hidden in times of plenty but come unmasked in stressful situations, ready to help with adaptation.
This is, we are told, still "a topic of active research." That is a good approach, better than insisting that traditional Darwinian concepts offer all the insight we need as long as we can cut the subject down to size. Because, one way or another, it's just not Darwin's evolution any more.

A variety of other non-Darwinian mechanisms of evolution may produce some change in some life forms, and we shall shortly give them each their turn in the spotlight.

Toward a theory of devolution. I

Michael Behe’s Darwin Devolves Topples Foundational Claim of Evolutionary Theory

Editor’s noteDarwin Devolves is currently being sold by preorder. The limited-time offer includes a new 41-part online course with Michael Behe, a bonus chapter, and an exclusive, national conference call. You can and should preorder here right now.

I saw at the website Peaceful Science that biologist Nathan Lents, author of Human Errors: A Panorama of Our Glitches, from Pointless Bones to Broken Genes, says that he has been asked to review Mike Behe’s new book, Darwin Devolves: The New Science About DNA That Challenges Evolution (DD). Professor Lents notes:
I’ve been commissioned to review Behe’s new book, out next year, so I am reading it now. I’m about 70 pages in and so far, all I’ve seen is, “Gee, this stuff is complicated!”
Lents can rest assured: There is far more to the book than that. Behe dismantles the fundamental claim of evolutionary theory that mutations and natural selection naturally drive life toward greater complexity as new information is constantly generated. In stark contrast to this belief, Behe demonstrates the opposite. He summarizes the thesis of his book by stating 
With surpassing irony it turns out that…Darwinian evolution proceeds mainly by damaging or breaking genes, which, counter-intuitively, sometimes helps survival. In other words, the mechanism is powerfully de-volutionary. It promotes the rapid loss of genetic information. Laboratory experiments, field research, and theoretical studies all forcefully indicate that, as a result, random mutation and natural selection make evolution self-limiting. That is, the very same factors that promote diversity at the simplest levels of biology actively prevent it at more complex ones. Darwin’s mechanism works chiefly by squandering genetic information for short-term gain. 
Several Red Flags
Behe begins by describing several red flags that demonstrate how evolutionary claims often represent a pretense of knowledge without real substance. For instance, in statements such as
…every cell has evolved mechanisms that identify and eliminate misfolded and unassembled proteins. 
one could simply remove the word “evolved” and no meaning would be lost. In other words, most evolutionary accounts include no significant details, so they provide no actual knowledge. 

Behe then describes several wonders of nature, such as insects with gears, bacteria that construct internal magnets out of toxic materials, and special cells in eyes that act as fiber optic cables tuned to specific wavelengths of light. I found this section particularly captivating. It also provided a stark contrast between the innovations seen in nature and natural selection’s observed limitations. 
The Core Argument
The following section lays out the core argument of the book which centers on the empirical data gleaned from the most thorough studies of evolution on the molecular level. Such research has only become possible in the last twenty years since new technology has enabled sequencing of DNA on large numbers of organisms. For the first time, evolutionary claims can be properly tested, and Behe presents the most rigorous analysis to date based on hard data. He describes research on numerous organisms including the following iconic examples:

Darwin’s finches: Approximately a dozen species of finches on the Galápagos island descended from a single species over a period of two million years. 
Cichlid fishes: About 500 species of cichlid fishes in Lake Victoria evolved from a single species over a period of 15,000 years. Similar numbers of species evolved from single species in Lake Malawi over a few million years and in Lake Tanganyika over 10 million years. 
E. coli: Approximately 60,000 generations of E. coli were studied by Richard Lenski’s research group. They periodically froze samples, so the changes in DNA could be mapped throughout the populations’ histories.  
All studies demonstrated the same basic results. First, the vast majority of adaptive mutations degrade or outright disable genes. For instance, the gene most strongly associated with the difference in blunt-beak verses pointed-beak finches is called ALX1. The only variation in it throughout all finch species is two mutations that both impair function. Similarly, the E. coli strains that best adapt to strong selective pressures primarily disable genes that are not immediately needed for survival. Behe labels this result the First Rule of Adaptive Evolution:
Break or blunt any gene whose loss would increase the number of offspring. 
First Rule of Adaptive Evolution
This rule is easy to understand. Random mutations can far more easily break a gene than enable some new function, so solutions to challenges that involve breaking a gene will predominate. An analogy Behe uses is a person whose house is filling up with water due to a leaky pipe. The available options are to break a hole in the wall to allow the water to escape or wait for a pump to be delivered that happens to be on a ten-year backorder. The obvious solution would be to break a hole in the wall. 

Second, mutations that modify a function are far fewer and represent trivial changes. For instance, the most widely publicized result from Lenski’s lab was the appearance of strains of E. coli that were able to eat citrate. However, the bacteria already have this ability. It is normally switched off in the presence of oxygen. The fortunate bacteria obtained an alteration that allowed them to access citrate in all conditions. The third observation is that mutations which initiate new functions or modify existing ones still usually lead to the loss of significant quantities of genetic information. In the previous example, the citrate-eating bacteria developed additional mutations which resulted in the loss of function in several other genes. In the end, the strains fine-tuned their metabolism to the new environment, but at the expense of losing the ability to survive in the original one. As another example, the bacteria that caused the Black Death in the 14th century evolved from a free-living benign species that lives in the soil. However, it acquired new genetic information from another bacteria which allowed it to live in a human host. In the new environment it quickly lost numerous genes which confined it to a parasitic lifestyle. 

A relatively small number of beneficial mutations do occur that do not incur negative costs, but they always represent miniscule changes. For instance, certain species of cichlid fish obtained a mutation in a rhodopsin protein which allowed for greater sensitivity to light at greater, versus lesser, water depths. But the new protein only differed from the original by a single amino acid. This single alteration represents the most impressive feat of evolution in one of biologists’ most prized case studies over a period of time comparable to that in which the largest transformations took place in the fossil record. Contrast this change with the hundreds, if not thousands, of coordinated mutations that are required to construct the fiber optic eye cells mentioned above. 
The Big Picture
The big picture conclusions of all studies is that evolutionary processes are only capable of driving changes at the level of species and genera, but not at the level of families or higher. Stated differently, evolution produces a limited number of changes and then no further significant change is possible. For instance, the adaptations seen in the cichlid fish in Lake Victoria over 15,000 years closely match those seen in the cichlid fish in the other lakes after several million years. The same limited number of changes repeated themselves over and over. In addition, all modifications represent minor alterations of the same cichlid body plan. 

The evidence commonly cited to argue for evolution’s ability to drive large-scale transformations is almost always circular. Biologists regularly identify similarities and differences between two groups and then assume those differences are the result of natural selection, mutations, and related processes. However, this conclusion is not based on any actual hard evidence. It is simply assumed. As Behe demonstrates, all empirical data point to the conclusion that evolution is only capable of producing minor alterations of existing designs but nothing truly novel. Evolutionists must now to an even greater extent disconnect their grand narratives from empirical data and confine them to the realm of their unrestrained imaginations. Anyone interested in knowing the truth about the design/evolution debate will find Darwin Devolves a must read.