Search This Blog

Sunday 17 April 2016

The Watchtower Society's commentary on king Saul

SAUL

[Asked [of God]; Inquired [of God]].

1. A Benjamite descended from Jeiel (presumably also called Abiel) through Ner and Kish (1Ch 8:29-33; 9:35-39; see ABIEL No. 1); the first divinely selected king of Israel. (1Sa 9:15, 16; 10:1) Saul came from a wealthy family. A handsome man, standing head and shoulders taller than all others of his nation, he possessed great physical strength and agility. (1Sa 9:1, 2; 2Sa 1:23) The name of his wife was Ahinoam. Saul fathered at least seven sons, Jonathan, Ishvi, Malchi-shua, Abinadab, Ish-bosheth (Eshbaal), Armoni, and Mephibosheth, as well as two daughters, Merab and Michal. Abner, evidently King Saul’s uncle (see ABNER), served as chief of the Israelite army.—1Sa 14:49, 50; 2Sa 2:8; 21:8; 1Ch 8:33.

The young man Saul lived during a turbulent time of Israel’s history. Philistine oppression had reduced the nation to a helpless state militarily (1Sa 9:16; 13:19, 20), and the Ammonites under King Nahash threatened aggression. (1Sa 12:12) Whereas Samuel had faithfully judged Israel, his sons were perverters of justice. (1Sa 8:1-3) Viewing the situation from a human standpoint and, therefore, losing sight of Jehovah’s ability to protect his people, the older men of Israel approached Samuel with the request that he appoint a king over them.—1Sa 8:4, 5.

Anointed as King. Thereafter Jehovah guided matters to provide the occasion for anointing Saul as king. With his attendant, Saul looked for the lost she-asses of his father. Since the search proved to be fruitless, he decided to return home. But his attendant suggested that they seek the assistance of the “man of God” known to be in a nearby city. This led to Saul’s meeting Samuel. (1Sa 9:3-19) In his first conversation with Samuel, Saul showed himself to be a modest man. (1Sa 9:20, 21) After eating a sacrificial meal with Saul, Samuel continued speaking with him. The next morning Samuel anointed Saul as king. To confirm that God was with Saul, Samuel gave him three prophetic signs, all of which were fulfilled that day.—1Sa 9:22–10:16.

Later, at Mizpah, when chosen as king by lot (1Sa 10:20, 21, JB; NE), Saul bashfully hid among the luggage. Found, he was presented as king, and the people approvingly shouted: “Let the king live!” Escorted by valiant men, Saul returned to Gibeah. Though good-for-nothing men spoke disparagingly of him and despised him, Saul remained silent.—1Sa 10:17-27.

Early Victories. About a month later (according to the reading of the Greek Septuagint and Dead Sea Scroll 4QSama in 1Sa 11:1) Ammonite King Nahash demanded the surrender of Jabesh in Gilead. (See NAHASH No. 1.) When messengers brought news of this to Saul, God’s spirit became operative upon him. He quickly rallied an army of 330,000 men and led it to victory. This resulted in a strengthening of Saul’s position as king, the people even requesting that those who had spoken against him be put to death. But Saul, appreciating that Jehovah had granted the victory, did not consent to this. Subsequently, at Gilgal, Saul’s kingship was confirmed anew.—1Sa 11:1-15.

Next Saul undertook steps to break the power of the Philistines over Israel. He chose 3,000 Israelites, placing 2,000 under himself and the remainder under his son Jonathan. Evidently acting at his father’s direction, “Jonathan struck down the garrison of the Philistines that was in Geba.” In retaliation, the Philistines assembled a mighty force and began camping at Michmash.—1Sa 13:3, 5.

Sins Presumptuously. Meanwhile Saul had withdrawn from Michmash to Gilgal in the Jordan Valley. There he waited seven days for Samuel. But Samuel did not come at the appointed time. Fearing that the enemy would sweep down upon him when he had not secured Jehovah’s help and that further delay would result in losing his army, Saul ‘compelled himself’ to offer up the burnt sacrifice. Samuel, on arriving, condemned Saul’s ‘foolish act’ as sinful. Evidently, Saul’s sin consisted of his presumptuously going ahead with the sacrifice and not obeying Jehovah’s commandment, which had been given through his representative Samuel, to wait for Samuel to offer up the sacrifice. (Compare 1Sa 10:8.) As a consequence of this act, Saul’s kingdom was not to last.—1Sa 13:1-14.

In the progress of the campaign against the Philistines, Saul pronounced a curse upon anyone partaking of food before vengeance was executed on the enemy. This rash oath led to adverse consequences. The Israelites tired, and though they triumphed over the Philistines, their victory was not as great as it might have been. Famished, they did not take time to drain the blood from the animals they afterward slaughtered, thereby violating God’s law concerning the sanctity of blood. Not having heard his father’s oath, Jonathan ate some honey. Saul, therefore, pronounced the death sentence upon him. But the people redeemed Jonathan, for he had been instrumental in Israel’s gaining the victory.—1Sa 14:1-45.

Rejected by God. Throughout Saul’s reign there were repeated battles against the Philistines and other peoples, including the Moabites, Ammonites, Edomites, and Amalekites. (1Sa 14:47, 48, 52) In the war against the Amalekites, Saul transgressed Jehovah’s command by sparing the best of their flock and herd as well as their king, Agag. When asked why he had not obeyed Jehovah’s voice, Saul disclaimed guilt and shifted the blame onto the people. Only after Samuel emphasized the serious nature of the sin and said that, because of it, Jehovah was rejecting him as king did Saul acknowledge that his error was the result of his fearing the people. After Saul pleaded with Samuel to honor him in front of the older men and in front of Israel by accompanying him, Samuel did appear with him before them. Then Samuel himself proceeded to put Agag to death. After that, Samuel parted from Saul and they had no further association.—1Sa 15:1-35.

It was after this and after the anointing of David as Israel’s future king that Jehovah’s spirit left Saul. From then on “a bad spirit from Jehovah terrorized him.” Having withdrawn his spirit from Saul, Jehovah made it possible for a bad spirit to gain possession of him, depriving Saul of his peace of mind and stirring up his feelings, thoughts, and imaginations in a wrong way. Saul’s failure to obey Jehovah indicated a bad inclination of mind and heart, against which God’s spirit offered Saul no protection or resistive force. However, since Jehovah had permitted the “bad spirit” to replace his spirit and terrorize Saul, it could be termed a “bad spirit from Jehovah,” so that Saul’s servants spoke of it as “God’s bad spirit.” On the recommendation of one of his attendants, Saul requested that David be his court musician to calm him when he was troubled by the “bad spirit.”—1Sa 16:14-23; 17:15.

Relationships With David. Thereafter the Philistines threatened Israel’s security. While they were camped on one side of the Low Plain of Elah and King Saul’s forces were camped on the opposite side, Goliath, morning and evening, for 40 days, emerged from the Philistine camp, challenging Israel to furnish a man to fight him in single combat. King Saul promised to enrich and to form a marriage alliance with any Israelite who might strike down Goliath. Also, the house of the victor’s father was to be “set free,” probably from the payment of taxes and compulsory service. (Compare 1Sa 8:11-17.) When David arrived on the scene with food supplies for his brothers and certain portions for the chief of the thousand (possibly the commander under whom David’s brothers served), his questionings apparently suggested his willingness to answer the challenge. This led to his being brought to Saul and to his subsequent victory over Goliath.—1Sa 17:1-58.

Develops enmity for David. Saul thereafter placed David over the men of war. This eventually resulted in David’s being celebrated in song more than the king himself. Saul, therefore, came to view David with suspicion and envious hatred. On one occasion, as David was playing on the harp, Saul ‘began behaving like a prophet.’ Not that Saul began to utter prophecies, but he evidently manifested extraordinary feeling and a physical disturbance like that of a prophet just prior to prophesying or when prophesying. While in that unusual, disturbed state, Saul twice hurled a spear at David. Failing in his attempts to pin David to the wall, Saul later agreed to give his daughter Michal in marriage to David upon the presentation of a hundred foreskins of the Philistines. Saul’s intent in making this offer was that David would die at their hands. The scheme failed, David presenting, not 100, but 200 foreskins to form a marriage alliance with Saul. The king’s fear of and hatred for David therefore intensified. To his son Jonathan and to all of his servants, Saul spoke about his desire to put David to death. When Jonathan interceded, Saul promised not to kill David. Nevertheless, David was forced to flee for his life, as Saul hurled a spear at him for the third time. Saul even had messengers watch David’s house and commanded that he be put to death in the morning.—1Sa 18:1–19:11.

That night David made his escape through a window of his house and ran to Ramah, where Samuel resided. With Samuel he then took up dwelling in Naioth. When news of this reached Saul, he sent messengers to seize David. But, upon arriving, they “began behaving like prophets.” Evidently God’s spirit operated upon them in such a way that they completely forgot the purpose of their mission. When this also happened to two other groups of messengers dispatched by him, Saul personally went to Ramah. He likewise came under the control of God’s spirit, and that for a prolonged period, this evidently providing David sufficient time to flee.—1Sa 19:12–20:1; see PROPHET (Means of Appointment and Inspiration).

David spares Saul’s life as God’s anointed. After these unsuccessful attempts on David’s life, Jonathan, for a second time, spoke out in behalf of David. But Saul became so enraged that he hurled a spear at his own son. (1Sa 20:1-33) From that time onward Saul relentlessly pursued David. Learning that High Priest Ahimelech had assisted David, Saul ordered that he and his associate priests be executed. (1Sa 22:6-19) Later, he planned to attack the Judean city of Keilah because David was residing there but abandoned the plan when David escaped. Saul continued the chase, hunting for him in wilderness regions. A Philistine raid, however, brought his pursuit to a temporary halt and enabled David to seek refuge in the Wilderness of En-gedi. On two occasions thereafter Saul came into a position that would have allowed David to kill him. But David refused to put out his hand against Jehovah’s anointed one. The second time Saul, learning of David’s restraint, even promised not to do injury to David. But this was an insincere expression, for it was only when he learned that David had run away to the Philistine city of Gath that he abandoned the chase.—1Sa 23:10–24:22; 26:1–27:1, 4.

Saul turns to spiritism. About a year or two later (1Sa 29:3), the Philistines came against Saul. Without Jehovah’s spirit and guidance, and abandoned to a disapproved mental state, he turned to spiritism, a transgression worthy of death. (Le 20:6) Disguised, Saul went to see a spirit medium at En-dor, requesting that she bring up the dead Samuel for him. From her description of what she saw, Saul concluded that it was Samuel. However, it should be noted that Jehovah had not answered Saul’s inquiries and obviously did not do so by means of a practice condemned by His law as warranting the death penalty. (Le 20:27) Therefore, what the woman said must have been of demonic origin. The message gave no comfort to Saul but filled him with fear.—1Sa 28:4-25; see SPIRITISM.

Saul’s death. In the ensuing conflict with the Philistines, Saul was severely wounded at Mount Gilboa and three of his sons were slain. As his armor-bearer refused to put him to death, Saul fell upon his own sword. (1Sa 31:1-7) About three days later a young Amalekite came to David, boasting that he had put the wounded king to death. This was evidently a lie, designed to gain David’s favor. David, however, commanded that the man be executed on the basis of the claim, because Saul had been Jehovah’s anointed one.—2Sa 1:1-15.

Meanwhile the Philistines had fastened the corpses of Saul and his three sons on the wall of Beth-shan. Courageous men of Jabesh-gilead, however, retrieved the bodies, burned them, and then buried the bones.—1Sa 31:8-13.

Years later, during David’s reign, the bloodguilt that had been incurred by Saul and his house in connection with the Gibeonites was avenged when seven of his descendants were slain.—2Sa 21:1-9.


2. A Benjamite of the city of Tarsus in Asia Minor who persecuted Christ’s followers but later became an apostle of Jesus Christ. (Ac 9:1, 4, 17; 11:25; 21:39; Php 3:5) In all of his letters he referred to himself by his Latin name Paul.—See PAUL.

On the history of life a question worth asking:The Watchtower Society's commentary II

Is Any Form of Life Really Simple?

Your body is one of the most complex structures in the universe. It is made up of some 100 trillion tiny cells—bone cells, blood cells, brain cells, to name a few.7 In fact, there are more than 200 different types of cells in your body.8

Despite their amazing diversity in shape and function, your cells form an intricate, integrated network. The Internet, with its millions of computers and high-speed data cables, is clumsy in comparison. No human invention can compete with the technical brilliance evident in even the most basic of cells. How did the cells that make up the human body come into existence?

What do many scientists claim? All living cells fall into two major categories—those with a nucleus and those without. Human, animal, and plant cells have a nucleus. Bacterial cells do not. Cells with a nucleus are called eukaryotic. Those without a nucleus are known as prokaryotic. Since prokaryotic cells are relatively less complex than eukaryotic cells, many believe that animal and plant cells must have evolved from bacterial cells.

In fact, many teach that for millions of years, some “simple” prokaryotic cells swallowed other cells but did not digest them. Instead, the theory goes, unintelligent “nature” figured out a way not only to make radical changes in the function of the ingested cells but also to keep the adapted cells inside of the “host” cell when it replicated.9*

What does the Bible say? The Bible states that life on earth is the product of an intelligent mind. Note the Bible’s clear logic: “Of course, every house is constructed by someone, but he that constructed all things is God.” (Hebrews 3:4) Another Bible passage says: “How many your works are, O Jehovah! All of them in wisdom you have made. The earth is full of your productions. . . . There are moving things without number, living creatures, small as well as great.”—Psalm 104:24, 25.

What does the evidence reveal? Advances in microbiology have made it possible to peer into the awe-inspiring interior of the simplest living prokaryotic cells known. Evolutionary scientists theorize that the first living cells must have looked something like these cells.10

If the theory of evolution is true, it should offer a plausible explanation of how the first “simple” cell formed by chance. On the other hand, if life was created, there should be evidence of ingenious design even in the smallest of creatures. Why not take a tour of a prokaryotic cell? As you do so, ask yourself whether such a cell could arise by chance.

THE CELL’S PROTECTIVE WALL
To tour a prokaryotic cell, you would have to shrink to a size that is hundreds of times smaller than the period at the end of this sentence. Keeping you out of the cell is a tough, flexible membrane that acts like a brick and mortar wall surrounding a factory. It would take some 10,000 layers of this membrane to equal the thickness of a sheet of paper. But the membrane of a cell is much more sophisticated than the brick wall. In what ways?

Like the wall surrounding a factory, the membrane of a cell shields the contents from a potentially hostile environment. However, the membrane is not solid; it allows the cell to “breathe,” permitting small molecules, such as oxygen, to pass in or out. But the membrane blocks more complex, potentially damaging molecules from entering without the cell’s permission. The membrane also prevents useful molecules from leaving the cell. How does the membrane manage such feats?

Think again of a factory. It might have security guards who monitor the products that enter and leave through the doorways in the factory wall. Similarly, the cell membrane has special protein molecules embedded in it that act like the doors and the security guards.

Some of these proteins (1) have a hole through the middle of them that allows only specific types of molecules in and out of the cell. Other proteins are open on one side of the cell membrane (2) and closed on the other. They have a docking site (3) shaped to fit a specific substance. When that substance docks, the other end of the protein opens and releases the cargo through the membrane (4). All this activity is happening on the surface of even the simplest of cells.

INSIDE THE FACTORY
Imagine that you have been allowed past the “security guard” and are now inside the cell. The interior of a prokaryotic cell is filled with a watery fluid that is rich in nutrients, salts, and other substances. The cell uses these raw ingredients to manufacture the products it needs. But the process is not haphazard. Like an efficiently run factory, the cell organizes thousands of chemical reactions so that they take place in a specific order and according to a set timetable.

A cell spends a lot of its time making proteins. How does it do so? First, you would see the cell make about 20 different basic building blocks called amino acids. These building blocks are delivered to the ribosomes (5), which may be likened to automated machines that link the amino acids in a precise order to form a specific protein. Just as the operations of a factory might be governed by a central computer program, many of the functions of a cell are governed by a “computer program,” or code, known as DNA (6). From the DNA, the ribosome receives a copy of detailed instructions that tell it which protein to build and how to build it (7).

What happens as the protein is made is nothing short of amazing! Each one folds into a unique three-dimensional shape (8). It is this shape that determines the specialized job that the protein will do.* Picture a production line where engine parts are being assembled. Each part needs to be precisely constructed if the engine is to work. Similarly, if a protein is not precisely constructed and folded to exactly the right shape, it will not be able to do its work properly and may even damage the cell.

How does the protein find its way from where it was made to where it is needed? Each protein the cell makes has a built-in “address tag” that ensures that the protein will be delivered to where it is needed. Although thousands of proteins are built and delivered each minute, each one arrives at the correct destination.

Why do these facts matter? The complex molecules in the simplest living thing cannot reproduce alone. Outside the cell, they break down. Inside the cell, they cannot reproduce without the help of other complex molecules. For example, enzymes are needed to produce a special energy molecule called adenosine triphosphate (ATP), but energy from ATP is needed to produce enzymes. Similarly, DNA (section 3 discusses this molecule) is required to make enzymes, but enzymes are required to make DNA. Also, other proteins can be made only by a cell, but a cell can be made only with proteins.*

Microbiologist Radu Popa does not agree with the Bible’s account of creation. Yet, in 2004 he asked: “How can nature make life if we failed with all the experimental conditions controlled?”13 He also stated: “The complexity of the mechanisms required for the functioning of a living cell is so large that a simultaneous emergence by chance seems impossible.”14

What do you think? The theory of evolution tries to account for the origin of life on earth without the necessity of divine intervention. However, the more that scientists discover about life, the less likely it appears that it could arise by chance. To sidestep this dilemma, some evolutionary scientists would like to make a distinction between the theory of evolution and the question of the origin of life. But does that sound reasonable to you?

The theory of evolution rests on the notion that a long series of fortunate accidents produced life to start with. It then proposes that another series of undirected accidents produced the astonishing diversity and complexity of all living things. However, if the foundation of the theory is missing, what happens to the other theories that are built on this assumption? Just as a skyscraper built without a foundation would collapse, a theory of evolution that cannot explain the origin of life will crumble.


After briefly considering the structure and function of a “simple” cell, what do you see—evidence of many accidents or proof of brilliant design? If you are still unsure, take a closer look at the “master program” that controls the functions of all cells.


  (HOW FAST CAN A CELL REPRODUCE?

Some bacteria can make replicas of themselves within 20 minutes. Each cell copies all the controlling “computer programs.” Then it divides. If it had unlimited access to fuel, just one cell could increase in number exponentially. At that rate, it would take only two days to produce a clump of cells with a weight more than 2,500 times greater than that of the earth.15 Cells that are more complex can also replicate quickly. For example, when you were developing in your mother’s womb, new brain cells formed at the astounding rate of 250,000 per minute!16

Human manufacturers often have to sacrifice quality to produce an item at a fast pace. How is it possible, then, that cells can reproduce so fast and so accurately if they are the product of undirected accidents?
  FACTS AND QUESTIONS

▪ Fact: The extraordinarily complex molecules that make up a cell—DNA, RNA, proteins—seem designed to work together.

Question: What seems more likely to you? Did unintelligent evolution construct the intricate machines depicted on page 10, or were those machines the product of an intelligent mind?

▪ Fact: Some respected scientists say that even a “simple” cell is far too complex to have arisen by chance on earth.

Question: If some scientists are willing to speculate that life came from an extraterrestrial source, what is the basis for ruling out God as that Source?

[Diagram on page 10]

(For fully formatted text, see publication)

The cell membrane has “security guards” that allow only specific substances to pass in or out)

Suboptimal?Says who?

Design Can Be Suboptimal on Purpose
Evolution News & Views

Evolutionists wrongly argue that ID can't be true because some designs are not optimal. But there might be a perfectly intelligent reason for some suboptimal designs in nature.

"When It Comes to Genetic Code, Researchers Prove Optimum Isn't Always Best," according tothe news from Texas A&M University. For example, "Imagine two steel springs identical in look and composition but that perform differently because each was tempered at a different rate." Engineers might want the springs to perform differently, and temper them that way for a reason.

Turning to the living cell, the researchers considered how variations in the coding of the biological clock can create similar timing differences. Their finding is related to our comments the other day on the "snooze button" on the biological clock. They were part of the team that found out how synonymous codons allow for timing differences that fine-tune circadian rhythms. Applying their analogy about tempered springs, we learn:

The group's research indicates that the protein in the fungal genus Neurospora they studied, frequency, performs better when the genetic code specifying it has non-optimal codon usage, as is normally found. However, when the genetic code is deliberately altered so that codon usage is optimized, clock function is lost. The reason for this is that non-optimal codon usage slows translation of the genetic code into protein, allotting the frequency protein the necessary time to achieve its optimal protein structure.
The team's results also demonstrate that genetic codons do more than simply determine the amino acid sequence of a protein as previously thought: They also affect how much protein can be made as well as the functional quality of that protein. (Emphasis added.)

So what at first appeared sloppy or suboptimal actually has a purpose. "Less is more" sometimes. Even though an alternate codon specifies the same amino acid, it can affect the action of the resulting enzymatic reaction through timing.
Also noteworthy about the news from Texas A&M is its elevated praise of design in the biological clock:

"Living organisms' inner clocks are like Swiss watches with precisely manufactured spring mechanisms," said Matthew Sachs, a professor in the Texas A&M Department of Biology. "For example, if you fast-temper a critical spring, the watch may be unable to keep time, as opposed to slow-tempering it. It's not just about the composition of the components, such as which alloy is used. It's about the manner in which the components are made. Our research says the genetic code is important for determining both composition and fabrication rate for a central component of the circadian clock, and that the fabrication rate also is critical. And that's essentially a discovery."
Swiss watch, you say? That sounds almost like an echo of Paley. But Paley's approach was natural theology. This approach is intelligent design: finding complex specified information, functioning with a purpose, that implies not necessarily a deity, but an intelligent cause that can be rightly inferred scientifically from our uniform experience with what intelligence routinely does.

Darwinism vs. the real world XXVI

Thyroid Function: When Real Numbers Don't Add Up

Howard Glicksman 

Editor's note: Physicians have a special place among the thinkers who have elaborated the argument for intelligent design. Perhaps that's because, more than evolutionary biologists, they are familiar with the challenges of maintaining a functioning complex system, the human body. With that in mind, Evolution News is delighted to offer this series, "The Designed Body." For the complete series, see here. Dr. Glicksman practices palliative medicine for a hospice organization.


By only considering DNA and the molecules that derive from it, evolutionary biologists only talk about how life looks, not how it actually works within the laws of nature to survive. It's like explaining how all the parts of the Saturn V came together as a functioning rocket without showing how it developed the capacity to overcome the Earth's gravitational pull to boost the Apollo XI into space.

In previous articles in this series I have shown that life does not exist within a vacuum or in the imagination of evolutionary biologists, but within the laws of nature. Those laws state that heat is the transfer of energy from one object to another, whereas temperature is a measure of the random motion within an object or its internal energy. The body must control its core temperature because if it isn't just right it can adversely affect enzyme function and the integrity of the plasma membrane and other cellular structures.

The core temperature is directly related to how much heat the body's metabolism releases, whether at complete rest (basal metabolic rate, or BMR) or with activity, and how much heat it loses to, or gains from, its surroundings. The BMR represents the minimum amount of heat the body produces and is mainly controlled by thyroid hormone activity. The exact mechanism of how thyroid hormone affects the metabolism of the cell is as yet poorly understood. However, studies indicate that it binds to a specific receptor in the nucleus of all of the body's cells to stimulate protein synthesis and cellular respiration, causing an increase in oxygen consumption and heat production.

We saw in a previous article that thyroid hormone production is controlled by the hypothalamus and the pituitary, both of which can detect its level in the blood. If the level is too low, the hypothalamus sends out more thyrotropin-releasing factor (TRF) and the pituitary sends out more thyroid-stimulating hormone (TSH). If it is too high, they send out less of the hormones. The more TRF is sent to the pituitary, where it attaches to specific receptors, the more TSH it releases, and vice versa. And the more TSH sent to the thyroid gland, where it attaches to specific receptors, the more thyroid hormone it releases, and the less sent, the less it releases. Clinical experience shows that the normal blood level for thyroid hormone is 60-140 units and for TSH, 0.4-4.2 units.

When your car isn't working properly, you can appreciate why all the different parts must be present and in good working order for it to function right. The same can be said for your body. Medical science's attention is usually brought to bear when the body is suffering from a condition that is affecting its ability to function properly. So, knowledge and appreciation for what thyroid function accomplishes in the body may best be viewed through the lens of dysfunction. Let's look at what happens to the body when the real numbers regarding thyroid function don't add up right.

Along with diabetes mellitus, diseases that affect thyroid function are one of the commonest endocrine disorders. In general, if the hypothalamus and pituitary are working normally, when the thyroid produces too much, or not enough hormone the blood level of thyroid hormone and TSH are outside the normal range. If the thyroid hormone level goes too low (hypothyroidism) there normally is a compensatory rise in the TSH as the pituitary tries to make the thyroid make more. And if the thyroid hormone level goes too high (hyperthyroidism) there normally is a drop in TSH, often approaching zero, as the pituitary tries to turn off the thyroid's excessive production.

Hypothyroidisminvolves a major drop in the production of thyroid hormone. World-wide, the commonest cause is a deficiency in iodine which, like iron for hemoglobin, is an important element for thyroid hormone production. The normal daily intake of iodine is about 150 micrograms, but there are many areas in the world where it may be as low as 20 micrograms. Most developed countries add iodine to salt and flour to prevent deficiency. The commonest cause for hypothyroidism in these countries is Hashimoto's thyroiditis, an autoimmune disease that produces antibodies that attack thyroid tissue, causing inflammation and tissue injury. Over time, as enough of thyroid tissue is destroyed, the thyroid gland is rendered incapable of producing adequate amounts of thyroid hormone to meet the body's normal metabolic needs.

Hypothyroidism causes all of the cells in the body to function slower than normal, use less energy, consume less oxygen, and give off less heat. All of this results in a major drop in the basal metabolic rate and every organ in the body is affected. People with hypothyroidism usually experience weight gain, despite eating less than usual, severe fatigue, muscle weakness, dry skin, loss of hair, increased sensitivity to cold, constipation, a slower heart rate, and may even have problems with concentration, memory, and depression. A person with severe hypothyroidism may even develop myxedema in which all of the tissues of the body become swollen. If not diagnosed and treated in time, these people can slip into a coma. Congenital hypothyroidism takes place in about 1 in 4,000 newborns and if not quickly diagnosed and treated can lead to permanent growth problems and intellectual deficiency.

Hyperthyroidism involves a major rise in the production of thyroid hormone activity and the commonest cause is Grave's Disease. This is also an autoimmune disease, but instead of causing inflammation and destruction of tissue, the antibodies stimulate the TSH receptors on the thyroid gland, making it produce more thyroid hormone. In this setting, the usual control mechanisms for thyroid hormone production are no longer working right, since the formation of these antibodies has nothing to do with the hypothalamus or the pituitary. Since these antibodies and their effect on the TSH receptors are not under hypothalamic and pituitary control, the thyroid gland becomes over-stimulated. This causes it to swell up and form a goiter and release increased amounts of thyroid hormone.

Hyperthyroidism causes all of the cells in the body to function faster than normal, use more energy, consume more oxygen and give off more heat. All of this, results in a major rise in the basal metabolic rate and every organ in the body is affected. People with hyperthyroidism usually experience weight loss, despite often eating more than usual, severe fatigue, muscle weakness, excessive sweating, nervousness, tremors, increased sensitivity to heat, diarrhea, and a faster heart rate that can sometimes lead to palpitations and life-threatening rhythm problems. Occasionally a person with hyperthyroidism may experience a thyrotoxic crisis where the core temperature rises above 105oF (41oC), and becomes confused, restless, and agitated which, if not diagnosed and treated can quickly progress to lethargy or a coma.

When it comes to thyroid hormone real numbers have real consequences. Not only is the total absence of thyroid hormone incompatible with human life, but for our earliest ancestors to have survived, not just any amount would have been sufficient. c The system the body uses to control the blood level of thyroid hormone demonstrates irreducible complexity. But, this article has shown that this is not enough for human life to survive within the laws of nature. Just like the systems the body uses to control oxygen, carbon dioxide, hydrogen ion, hemoglobin, iron, water, sodium, potassium, respiration, heart rate, and blood pressure, the one for thyroid function must have natural survival capacity, because it seems to know what the normal range is and then, using an irreducibly complex system, achieves it.


However, the control of thyroid hormone and the basal metabolic rate represents only one part of what the body must do to control its core temperature. After all, life is a dynamic process and the body must stay very active within an environment to which it can lose heat, or gain from it. In the next article, I will review what it takes for the body to control its core temperature and what happens when the numbers just aren't right.

Another failed Darwinian prediction XVIII

Nature does not make leaps

Evolution is a process. It occurs gradually via variations within populations. The tempo may vary, but “the canon of ‘Natura non facit saltum,’” as Darwin explained, was “on this theory intelligible.” But today this is no longer true. The first problem, that species appeared abruptly in the strata, could be explained as a spotty fossil record, though incredible stretches of evolutionary progress would have to have gone missing.

But the fossil record is not the only evidence for leaps. Since Darwin, rapid change has been directly observed in species ranging from bacteria and yeast to plants and animals. Consider the house finches which began spreading throughout the United States in the 1940s from Mexico and the southwest. The beaks of these birds adapted to their new environments with great speed. Within a decade or so their beaks had adjusted to the new habitats. (Grant) In another example, Italian wall lizards introduced to a tiny island off the coast of Croatia responded rapidly, developing new head morphology and digestive tract structure. (Herrel, et. al.) Such change “would normally take millions of years to play out …” (Johnson) Likewise mussels introduced to a new environment were found to evolve “in an evolutionary nanosecond compared to the thousands of years previously assumed.” (Mussels evolve quickly to defend against invasive crabs) Such examples of adaptation are not new, and one evolutionist concluded that “evolution can occur much more rapidly than we previously thought. Rapid evolution is pervasive, and the list of examples is growing.” (Rapid Evolution Helps Hunted Outwit Their Predators)

All of this means that evolution may need a new mechanism of change. In fact it appears doubtful that minor biological variations leads to large-scale change. As one evolutionist put it, macroevolution is more than repeated rounds of microevolution. (Irwin) Increasingly evolutionists have recognized the need for a new mechanism to explain evolutionary change. (Gould, 579, 582) In recent years evolutionists have considered precisely what Darwin ruled out: saltational evolution. Here are some examples:

As nature does jump, exclusive gradualism is dismissed. Saltatory evolution is a natural phenomenon, provided by a sudden collapse of the thresholds which resist against evolution. The fossil record and the taxonomic system call for a macromutational interpretation. (van Waesberghe)

We offer evidence for three independent instances of saltational evolution in a charismatic moth genus with only eight species. … Each saltational species exhibits a markedly different and discrete example of discontinuous trait evolution (Rubinoff and Le Roux)

Major transitions in biological evolution show the same pattern of sudden emergence of diverse forms at a new level of complexity. The relationships between major groups within an emergent new class of biological entities are hard to decipher and do not seem to fit the tree pattern that, following Darwin’s original proposal, remains the dominant description of biological evolution. The cases in point include the origin of complex RNA molecules and protein folds; major groups of viruses; archaea and bacteria, and the principal lineages within each of these prokaryotic domains; eukaryotic supergroups; and animal phyla. In each of these pivotal nexuses in life’s history, the principal “types” seem to appear rapidly and fully equipped with the signature features of the respective new level of biological organization. No intermediate “grades” or intermediate forms between different types are detectable. (Koonin)

Here we provide for the first time evidence of major phenotypic saltation in the evolution of segment number in a lineage of centipedes (Minelli, Chagas-Júnior and Edgecombe)

Titles of research papers, which include phrases such as “farewell to Darwinism, neo- and otherwise,” “when natura non facit saltum becomes a myth,” “Saltational evolution: hopeful monsters are here to stay,” and “a Neo-Goldschmidtian view of unicellular hopeful monsters,” highlight this falsification of evolution’s prediction that there are no leaps.

References

Gould, Steven Jay. 2002. The Structure of Evolutionary Theory. Cambridge: Belknap Press.

Grant, B. 2010. “Should Evolutionary Theory Evolve?.” TheScientist January 1.

Herrel, A., et. al. 2008. “Rapid large scale evolutionary divergence in morphology and performance associated with the exploitation of a novel dietary resource in the lizard Podarcis sicula.” Proceedings of the National Academy of Sciences 105:4792-4795.

Irwin, D. 2000. “Macroevolution is more than repeated rounds of microevolution.” Evolution & Development 2:61-62.

Johnson, K. 2008. “Lizards rapidly evolve after introduction to island.” National Geographic News April 21.

Koonin, E. 2007. “The Biological Big Bang model for the major transitions in evolution.” Biology Direct 2:21.

Minelli, A., A. Chagas-Júnior, G. Edgecombe. 2009. “Saltational evolution of trunk segment number in centipedes.” Evolution & Development 11:318-322.

“Mussels evolve quickly to defend against invasive crabs.” 2006. ScienceDaily August 11. http://www.sciencedaily.com/releases/2006/08/060811091251.htm

“Rapid Evolution Helps Hunted Outwit Their Predators.” 2003. NewsWise July 16.
http://www.newswise.com/articles/view/?id=500152&sc=wire

Rubinoff, D., J. Le Roux. 2008. “Evidence of repeated and independent saltational evolution in a peculiar genus of sphinx moths (Proserpinus: Sphingidae).” PLoS One 3:e4035.

van Waesberghe, H. 1982. “Towards an alternative evolution model.” Acta Biotheoretica 31:3-28.