Search This Blog

Sunday, 24 July 2016

Yellow journalism will be the death of Britain?:Pros and cons.

Demythifying peer review II

The Hoax on Us
Drivel, Fraud & Gibberish in Scientific Papers
by Denyse O'Leary

An entertaining but revealing development in science culture in recent years has been the intentionally nonsensical academic paper. Earlier this year, political scientist Peter Dreier admitted at Prospect that his abstract for a panel of six years ago, "On the Absence of Absences," was "academic drivel":

I tried, as best I could within the limits of my own vocabulary, to write something that had many big words but which made no sense whatsoever. I not only wanted to see if I could fool the panel organizers and get my paper accepted. . . .1

Well, not only was it accepted, but he was also invited to join fellow academics in Tokyo at the annual international conference of the Society for Social Studies of Science.


Sokal & His Imitators

The hoax journal paper genre was started, as Dreier explains, by New York University physicist Alan Sokal in 1996. Sokal aimed to skewer the postmodern dogma that facts, even in mathematics and physics, are merely a social construct. He submitted an article to Social Text, a postmodern cultural studies journal, that, "shorn of its intentionally outrageous jargon, essentially made the claim that gravity was in the mind of the beholder." The paper, "Transgressing the Boundaries: Towards a Transformative Hermeneutics of Quantum Gravity," was published in the Spring/Summer 1996 issue of the journal. Writes Dreier:

As soon as it was published, Sokal fessed up in another journal (Lingua Franca, May 1996), revealing that his article was a sham, describing it as "a pastiche of Left-wing cant, fawning references, grandiose quotations, and outright nonsense . . . structured around the silliest quotations [by postmodernist academics] he could find about mathematics and physics."2

Sokal has had many imitators since, a disquieting number of whom have been successful. One entertaining 2015 hoax purportedly showed that boo-boo kisses from mommy did not help heal children's scrapes and recommended "a moratorium on the practice." Other entries don't sound quite so cute, however.

For example, in 2005, MIT researchers developed software they called SCIgen, which "randomly combines strings of words to produce fake computer-science papers." Their aim was to demonstrate that "conferences would accept meaningless papers."3 That was no idle concern. In 2014, computer scientist Cyril Labbé catalogued 120 computer-generated "gibberish" papers that had been published as conference proceedings in the five years between 2008 and 2013 alone. Sixteen papers had appeared in publications of the well-regarded science publisher Springer, and more than 100 were published by the Institute of Electrical and Electronic Engineers. All the papers had to be removed from the relevant databases.

Once discovered, hoax papers can sometimes be retracted with little fuss, but other times the matter doesn't end well. In a very recent case, the authors of a hoax paper about death-camp guard dogs had intended to satirize postmodern attempts to "interpret historical events through the perspective of affected animals." Unfortunately, the authors failed to let the journal or their readers in on the joke. The paper was retracted with some pointed criticism.4

Along with hoax papers, there has been an increase in fraudulent journal papers as well,5 but here we should recognize a distinction: frauds are not the same thing as hoaxes. Piltdown Man and the feathered dinosaur ("Piltdown Chicken"), to cite two concrete examples, were frauds. The fraudster needs the world to believe—and go on believing—the fraud. The hoaxer, by contrast, delights in the moment he can reveal the truth, for that is the point of the exercise.

Left-Wing Bias Paints the Target

Both fraudulent and hoax papers riff off the needless complexity of today's academic prose. Granted, lay readers are often going to be baffled by forbidding but essential technical terms in a research paper. But papers that baffle everyone—even those in the field—while sounding profound are a different matter. Such papers can be seen as resulting from the postmodern invasion of the sciences by nihilist philosophies. Indeed, wags now offer tongue-in-cheek directions for perpetrating a science hoax, and explain how to construct a gibberish paper that gets accepted by journals.5 Perhaps many journals find it easier just to accept a few such papers than to confront the troubling reality they represent: that words don't need to mean anything to be accepted in their discipline.

Social science is especially hard-hit these days; one psychologist described it as "riddled with flaky research and questionable theories."6 There is a surprisingly broad consensus about the cause—that is, everyone from Michael Shermer to Uncommon Descent agrees on it—namely, that the field's overwhelmingly progressive-left bias makes it an easy mark for both hoaxes and frauds.7

It also makes it an easy target for a third category of problem paper that is neither a hoax nor a fraud exactly: the nonsense paper that may well be believed by its authors. Examples of these include the widely cited "positivity ratio" in psychology, which was assessed as "entirely unfounded" in 2013,8 and the recent, apparently serious attempt to "feminize" melting glaciers.9

This sort of thing should come as no surprise. Monochromatic bias exposes a community to greater risk because few of its members even notice a hoax, fraud, or nonsense thesis that passes their bias filter. Usually, the person to whom it doesn't sound right has different commitments and life experiences, and he or she is the one motivated to investigate.

Ironically, many defenders of the status quo in recent years have claimed to be "scared to death of the anti-science lobby."10 Their worries are misplaced. It's actually science that is coming to get them. Soon. •

Notes
1. Peter Dreier, "Academic Drivel Report," Prospect (Feb. 22, 2016): http://bit.ly/1QeFT8Q.
2. Ibid.
3. Nature News (Feb. 24, 2014): nature.com/news/publishers-withdraw-more-than-120-gibberish-papers-1.14763.
3. "Death camp dog satire retracted when German journal wasn't in on joke," Retraction Watch (Mar. 1, 2016): http://bit.ly/1Tt5vEU.
4. Ibid.
5. Adam Ruben, "Forging a Head," Science (Apr. 22, 2011): http://bit.ly/21ZSNCF; Rob Sheldon, "How, exactly, to construct a gibberish paper that gets accepted by journals," Uncommon Descent (Mar. 6, 2014): http://bit.ly/1XcVycU.
6. Claire Lehmann, "How a rebellious scientist uncovered the surprising truth about stereotypes," Quillette (Dec. 4, 2015): http://bit.ly/1SExNbD.
7. Michael Shermer, "Is Social Science Politically Biased? Political bias troubles the academy," Scientific American (Mar. 1, 2016): scientificamerican.com/article/is-social-science-politically-biased.
8. The Scientist (Aug. 7, 2013): the-scientist.com/?articles.view/articleNo/36910/title/-Positivity-Ratio--Debunked.
9. "As glaciers melt, more voices in research are needed," Around the O (Feb. 25, 2016): http://bit.ly/1QW7efz.
10. Robin McKie, "Attacks paid for by big business are 'driving science into a dark era,'" The Guardian (Feb. 19, 2012): http://bit.ly/1nwMgfE.


Birds in the dock for Design

How Hummingbirds Avoid Collisions
Evolution News & Views

Who doesn't enjoy watching hummingbirds through the window at their backyard feeder? These amazing birds, zipping to and fro in all directions at stunning velocity, never seem to crash. Intrigued by their flight prowess, Canadian scientists decided to look into how they do it. They learned something new and unique about the tiny birds' strategy for collision-free navigation.


To make controlled observations of hummingbird paths, the team from the University of British Columbia built a flight simulator consisting of a long box 5.5 meters long, lined with eight cameras. On the side walls, they could project images of vertical and horizontal lines of various widths, and control their motions. Then they caught 18 wild hummingbirds, kept them separate from one another, and trained them to fly the tunnel toward a feeder. While projecting a wide variety of patterns on the walls, they filmed 3,100 flights by the birds.



The results are published in the Proceedings of the National Academy of Sciences (PNAS). New Scientist says:

Hummingbirds have a unique collision avoidance system built into their brains that allows them to perform high-speed aerobatics in safety.
The super-agile birds, whose wings beat up to 70 times a second, can hover, fly backwards, and whizz through dense vegetation at more than 50 kilometres per hour.

How they manage to avoid potentially fatal crashes has remained a mystery until now. Researchers in Canada conducted a series of experiments which showed that the birds process visual information differently from other animals. [Emphasis added.]

Here's what the team expected. Based on earlier studies with insects, they thought that birds would respond to moving stripes on the side walls. The paper states:

Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly.
To their surprise, the scientists found that hummingbirds use a different strategy. They don't seem to be affected by pattern velocity, at least when seeing vertical stripes pass by along the walls (known as "nasal-to-temporal pattern velocity"). One would think that the speed of moving bars in their peripheral vision (i.e., the optic flow), would make them speed up or slow down as they approached the feeder; this is known as the "telegraph pole effect," familiar to drivers who can gauge their speed by the passing of telephone poles. But no matter how they varied the speed of the vertical stripes, it didn't seem to matter to the birds. New Scientist explains:

When the scientists simulated the "telegraph poles effect" with vertical moving stripes, the hummingbirds did not react. Instead, they appeared to rely on the size of objects to determine distance, steering away from the stripes as they grew larger.
"When objects grow in size, it can indicate how much time there is until they collide even without knowing the actual size of the object," says Dakin. "Perhaps this strategy allows birds to more precisely avoid collisions over the very wide range of flight speeds they use."

It's not that the birds were incapable of responding to the speed of the moving bars. When horizontal bars were projected moving up or down, the birds did respond by varying their altitude, probably using the information to gauge their risk of hitting the ground. But for preventing collision with the feeder, they appeared to rely mainly on the increasing vertical size of the target.

Further tests confirmed their findings. Instead of stripes, they tried projecting moving dots. They tested many combinations of dots, stripes, stripe orientations and stripe motions. The secret became clear: expansion of an object in any part of the field of view was the bird's cue to respond. They would slow down or steer away from anything that grew in size vertically.

Collectively, our findings suggest that birds control forward flight by monitoring changes in the vertical axis: specifically, the height of features and vertical pattern velocity. This finding is consistent with other laboratory studies showing that flying birds rapidly stabilize key features in their visual field. In nature, collisions may be avoided by monitoring changes in the apparent size of features, such as trees and branches, as well as changes in the vertical position of those features. Although our experiments focused on manipulating a limited number of cues, we do not suggest that these represent the only visual guidance strategies used by birds.
Now apply this to a confusing, dynamic tangle of branches, leaves, flowers, and objects that hummingbirds must face in their natural environments. The strategy allows them to quickly zero in on the pertinent optic flow information to avoid collisions. Moving at 50 km/hour, hummingbirds must be quick! This programmed strategy avoids TMI (too much information), giving them only what they need at the moment, even though their brains are perfectly capable of gathering and processing all the information in the visual field.

It makes sense that birds, being much larger than insects, would use a different strategy for collision avoidance. It appears that the strategy is common to birds. Previous tests with budgerigars (the pet parakeets) showed similar responses. Now see what a large goshawk has to deal with in its flight through a tangled forest!





The scientists realize that the behaviors must relate somehow to actual nerve impulses:

Neurons that compute expansion have been identified in the nucleus rotundus of the pigeon brain, part of the tectofugal pathway.... These cues can inform an animal about the nearness in time of an impending collision, triggering an appropriately timed response without knowledge of the true size or distance of the approaching object. It was recently discovered that the zebra finch nucleus rotundus also contains cells that respond during simulated flight if an approaching feature is located at the point of expansion, suggesting that the tectofugal pathway may also be involved in flight control.
Flight control. That's design. Understandably, the scientists did not speculate about how flight control systems might have evolved. Spinning a "narrative gloss" on the findings would have dubious value.

On the contrary, you can certainly appreciate that the knowledge gained by investigation of "flight control" in hummingbirds might improve the design of drones, now that "drone racing" is becoming one of the hottest new sports. Look at this:




As you watch the man-made racing drones suffer "spectacular crashes" in their "daring aerial maneuvers," then realize that hummingbirds already had collision avoidance figured out, you can't help but remember Paul Nelson's quip in Flight: The Genius of Birds, "If something works, it's not happening by accident."

The undeniable logic of the case for design II

If You Could Get a Critic to Read Just One Book about Intelligent Design, It Might be Undeniable
David Klinghoffer

Following the evolution debate for me has been a revelation about human nature, among other things, showing as it does how fiercely resistant the mind is to considering other intellectual frameworks. The library of books that make the argument for ID is rich and multifaceted. Yet one of the perennial laments of the ID proponent is that we have a hard time getting our critics, whether in the science or media world, to read any of this literature.

They are much more likely to content themselves with a quick skim of the woefully misleading Wikipedia page, followed by the one word dismissal, "creationist." Sometimes, then, you can't help daydreaming: If you could give a critic just one book on ID with the assurance that he or she would actually read it, what would that book be?

It's a tough question. Certainly Doug Axe's new book, Undeniable:  Undeniable: How Biology Confirms Our Intuition That Life Is Designed, would be a contender for its concision, accessibility, rigor, and passion. I've already shared with you what some open-minded scientists have said about the book (see here  and  here). Here's more from a diverse and distinguished readership.

Undeniable speaks to everyone, and who would know better about that than a New York Times bestselling novelist like Dean Koontz? Says Mr. Koontz:

Great scientists are as much artists as scientists. Enchanted by the beauty of the world, they see through ideologies to facts. In this engaging book, with facts and humility and humor and reason, Axe uses "common science" to consider the biggest mystery: To what or to whom do we owe our existence? I greatly enjoyed it.

It speaks to ultimate questions of origins, from the perspective of science. And who would know better about that than physicist Gerald Schroeder, author of The Science of God:

So often we read secondary accounts of the intelligence that lurks behind the wonders of life. In Undeniable we are privy to a first-hand account of the evidence for intelligence, and also the painful professional cost of swimming against the flow of an accepted, but un-proven, truth. A must-read.

Yes, though newly published, it's already on its way to being recognized as an ID classic. And who would know better about that than an icon and founder of the intelligent design movement, Phillip E. Johnson, Professor Emeritus of Law at U.C. Berkeley and author of Darwin on Trial? Says M. Johnson:

Douglas Axe's Undeniable is bold, insightful and world-changing. It's also a joy to read. I recommend it highly!

Finally, in case you missed it already, Dr. Axe explains the science behind our intuition of design in nature. Not all intuitions are reliable, but this one reflects what Axe calls "common science." Here, then, is still another scientist, biologist Donald Ewert, Director of Research at the Hough Ear Institute and former Wistar Institute Research Scientist. Says Dr. Ewert:

Life begs for an explanation. Written from point of view of a molecular biologist Undeniable makes a compelling case based on current research and human reasoning that living organisms were designed by an intelligent agent. Axe delivers a decisive blow to the foundations of materialistic explanations of the origin and diversity of life's forms, explanations that have dominated biology for the past two hundred years years. He demonstrates an informed grasp of the current scientific and philosophical information that he communicates in an interesting style that can be understood by most laymen. Undeniable will change the way you think about the living world.


That's some very impressive praise. Surely Undeniable belongs in your ID library.