Search This Blog

Monday 3 July 2017

The winged swarms v.Darwin.

Collective Motion Multiplies Design Requirements

Evolution News @DiscoveryCSC

A memorable sequence from Illustra Media’s documentary Flight: The Genius of Birds examines the phenomenon of starling murmurations (see it  here)
When you consider the training required for six fighter pilots to fly in formation, it becomes all the more remarkable to watch half a million birds perform split-second maneuvers in close proximity to one another.

In the film, European scientists sought to understand the birds’ collective motion by plotting the positions over time of individuals and small groups of birds within the flock. Now in a new paper in PLOS ONE
, four UK scientists try a different approach. They monitored a flock of “citizen scientists” who volunteered to record observations of starling murmurations over a two-year period. Some 3,000 volunteers from 23 countries participated. The large data set, mostly gathered within the UK, allowed the researchers to address little-understood questions about this spectacular example of collective motion, such as seasonal activity, dependence on temperature, and whether or not predators affect the size or length of a murmuration. Here’s a quick summary of the findings:

Flock sizes increased from October to February, then declined.
Average duration was 26 minutes; longest ones were at the beginning of the season.
Cool temperatures weakly increased murmuration durations, but day length was more significant.
Predators were observed in only about 30 percent of the murmurations.
When predators were present, the birds tended to descend en masse to their roosts rather than disperse.
Based on the data, the authors believe that predator avoidance (the “safer together” hypothesis) is probably more in play than temperature (the “warmer together” hypothesis):

[O]ur findings suggest that the collective behaviour observed in starling murmurations is primarily an anti-predator adaptation rather than a way of attracting larger numbers of individuals to a roost for warmth. Suitable roosting sites attract large numbers of birds who would be vulnerable flying to the roost individually. Murmurating above the roosting site provides multiple advantages in terms of the dilution effect, increased vigilance leading to the detection effect and predator confusion. This model of murmuration relies on having a critical mass of birds arriving at more-or-less the same time to initiate the murmuration and further study of the behaviour of starlings at the start of the murmuration (and indeed, just before the start of the murmuration) would be valuable in unravelling how this behaviour develops from a relatively few number of individuals into a spectacular collective behaviour comprising potentially tens of thousands of individuals.
Discovering one reason for a behavior, however, does not negate other possibilities. Perhaps the birds sleep better after an energetic exercise program. Or, maybe it gives them pleasure somehow. Predator avoidance may just be a side benefit, since predators were not observed during most of the events. It seems overly costly to evolve this kind of elaborate flight behavior for predator avoidance when simpler options could do, such as camouflage or scattering. And why didn’t the predators evolve counter-measures, like engaging in attack murmurations of their own, dive-bombing the flock en masse in their roosts? Have hawks been fooled by the starlings’ trick for millions of years? For these and other reasons, evolutionary explanations fall short. The authors don’t even mention evolution or speculate about how the behavior arose.

One thing we can be sure of: performing split-second decisions in tight formation in 3-D without colliding doesn’t just happen. To do what these birds do takes precision flight hardware and software. We appreciate the effort of the researchers and the citizen scientists to gather all this data. It does provide new insight into a marvelous natural wonder. The most important questions, though, remain unanswered by those who restrict their explanations to methodological naturalism.

Collective behavior is seen throughout the animal kingdom: in swarming insects, shoaling fish, stampeding mammals, and flocking birds. The phenomenon is so interesting to the Human Frontiers Science Programme (supported by 15 countries including the United States) that it recently awarded $1 million to a team led by Dr. Alex Thornton to study it. News from the University of Exeter 
says, “The riddle of how these often vast numbers of individuals synchronize their movements so flawlessly as to behave almost as a single being has only recently begun to be unravelled.”

Thornton is particularly interested in how individual characteristics affect the group, since no two individuals are exactly alike. Even human “flocks” cross the divide between individual and group behavior, as seen in traffic flow and crowd dynamics (for example, doing “the wave” at a baseball game). For the next three years, Thornton’s team will study intelligent members of the crow family, jackdaws and rooks, which often flock together.

Dr Thornton added: “Although people may not realise it, the familiar sight of flocks of jackdaws and rooks that darken our winter skies is amongst the most complex aggregations of animals on Earth. By studying the movements of individual birds within flocks, and their interactions with one another, we will help to reveal how complex societies remain cohesive and make collective decisions.”
Large aquariums delight visitors with their displays that often include swarms of anchovies swimming like one giant organism, all turning on cue. A new paper in Science Advances
 (an open-access journal of the AAAS) seeks to understand “the effects of external cues on individual and collective behavior of shoaling fish.” What happens when you scare a school of fish, or attract them with food?

To date, experimental work has focused on collective behavior within a single, stable context. We examine the individual and collective behavior of a schooling fish species, the x-ray tetra (Pristella maxillaris), identifying their response to changes in context produced by food cues or conspecific alarm cues. Fish exposed to alarm cues show pronounced, broad-ranging changes of behavior, including reducing speed and predictability in their movements. Alarmed fish also alter their responses to other group members, including enacting a smaller zone of repulsion and increasing their frequency of observation of, and responsiveness to, near neighbors. Fish subject to food cues increased speed as a function of neighbor positions and reduced encounter frequency with near neighbors. Overall, changes in individual behavior and the interactions among individuals in response to external cues coincide with changes in group-level patterns, providing insight into the adaptability of behavior to changes in context and interrelationship between local interactions and global patterns in collective behavior.
Those reactions don’t sound surprising, since we humans can probably relate to watching our neighbors more closely when alarmed, or rushing past them to get free stuff. So again, while one appreciates the graphs and charts of relative speeds of the fish when they are subjected to external cues, the paper leaves the most interesting questions unaddressed: how could evolution equip fish with the hardware and software to respond quickly in coordinated fashion while swimming millimeters apart?

The authors mention “rules of interaction,” but who made the rules, and who enforces them? How did the fish learn the exceptions, when the rules become “context-dependent”? If every individual did not know the rules, frightened fish might make like the Midianites in the story from the Book of Judges, killing each other off in the confusion of the moment. Starlings appear to follow simple rules, but without reliable programming in each individual, the murmuration could turn into a demolition derby.

Fighter pilots mastering formation flight require many hours of sophisticated training in intelligently designed aircraft. From this fact, we can deduce that intelligence was involved in the origin of collective behavior in animals. Tellingly, this paper, like the other one, doesn’t get into evolution. It makes you wonder about that claim that nothing in biology makes sense without it.

Is OOL Science's road to LUCA really another bridge to nowhere?

Origin-of-Life Researcher Admits, It’s “A Long, Long Way to LUCA”
Evolution News @DiscoveryCSC


As David Klinghoffer noted briefly here already, a recent paper in Nature Reviews Chemistry, Studies on the origin of life — the end of the beginning,” opens with a striking admission. In the article, British biochemist John Sutherland concedes the lack of progress in explaining a naturalistic origin of life. Let’s look at this in some more detail. Sutherland writes:

Understanding how life on Earth might have originated is the major goal of origins of life chemistry. To proceed from simple feedstock molecules and energy sources to a living system requires extensive synthesis and coordinated assembly to occur over numerous steps, which are governed only by environmental factors and inherent chemical reactivity. Demonstrating such a process in the laboratory would show how life can start from the inanimate. If the starting materials were irrefutably primordial and the end result happened to bear an uncanny resemblance to extant biology — for what turned out to be purely chemical reasons, albeit elegantly subtle ones — then it could be a recapitulation of the way that natural life originated. We are not yet close to achieving this end, but recent results suggest that we may have nearly finished the first phase: the beginning. [Emphasis added.]

(John D. Sutherland, “Studies on the origin of life — the end of the beginning,” Nature Reviews Chemistry, Vol. 1:12 (2017))

Here, Sutherland admits, as others have done, that scientists are nowhere near figuring out how life arose naturally. Later on in the paper he elaborates on just how far away they really are. More on this in a moment, but let’s quickly examine his claim that scientists are “nearly finished” explaining “the first phase” of the origin of life.

Most theorists think that the origin of life will ultimately be explained as a series of steps, including:

The creation of monomers via prebiotic synthesis
The formation of polymers from those monomers
The formation of a self-replicating molecule
The formation of cells to encapsulate those self-replicating molecules
Of course, there are many other steps along the way, but these are the main ones involved. The first two are thought to have involved pure chemistry — what one might call “necessity,” or things bound to happen given the deterministic laws of nature.

The last two steps are considered to be more a matter of contingency. That is, they things that did not have to happen and may have simply occurred due to lucky happenstance. This is because, as we’ll see, forming complex polymers (like RNA) — which scientists are still nowhere near explaining — provides no guarantee that you’ll generate the right sequences of nucleotides in those RNAs to yield a self-replicating molecule.

So what Sutherland claims we’re close to explaining is merely the first step: forming simple organic monomers via chemical reactions that were bound to happen under chemical processes on the early earth. Or were they?

We’ve reviewed Sutherland’s work here at Evolution News in the past. He and his team have focused on how to explain the origin of nucleotides under natural chemical conditions. His research produced some nucleotides. Whether it mimicked plausible conditions that might have existed naturally on the early earth is an entirely different question.

For example, in 2009 he co-authored a paper in Nature purporting to produce activated pyrimidine ribonucleotides under “prebiotically plausible conditions.” An evaluation of his paper showed the conditions weren’t so prebiotically plausible after all. After the New York Times praised Sutherland’s paper, Discovery Institute’s Stephen Meyer wrote a response noting that it “fail[s] to address the fundamental issue that has generated the longstanding impasse in the field: the problem of the origin of biological information.” Later, Meyer observed that “not only does this study not address the problem of getting nucleotide bases to arrange themselves into functionally specified sequences, but the extent to which it does succeed in producing biologically relevant chemical constituents of RNA actually illustrates the indispensable role of intelligence in generating such chemistry.”

In a subsequent post, Casey Luskin asked various pro-ID chemists to review Sutherland’s research. They concluded that Sutherland’s reactions required substantial intelligent intervention and would certainly never occur under blind and unguided natural conditions:

“The starting materials are ‘plausibly’ obtainable by abiotic means, but need to be kept isolated from one another until the right step, as Sutherland admits. One of the starting materials is a single mirror image for which there is no plausible way to get it that way abiotically. Then Sutherland ran these reactions as any organic chemist would, with pure materials under carefully controlled conditions. In general, he purified the desired products after each step, and adjusted the conditions (pH, temperature, etc.) to maximum advantage along the way. Not at all what one would expect from a lagoon of organic soup. He recognized that making of a lot of biologically problematic side products was inevitable, but found that UV light applied at the right time and for the right duration could destroy much (?) of the junk without too much damage to the desired material. Meaning, of course, that without great care little of the desired chemistry would plausibly occur. But it is more than enough for true believers in OOL to rejoice over, and, predictably, to way overstate in the press.”
“They used pH manipulation, phosphate buffers, and irradiation all at the correct times and amounts to achieve their goal, which was to produce ‘activated pyrimidine ribonucleotides.’ Indeed, they could have shortened their title by chopping off the last four words and sent the paper to the Journal of Organic Synthesis and had a good chance of getting it accepted as a novel synthetic route with full credit to themselves for their clever manipulations. Certainly the fingerprints of several intelligent chemists are all over this pathway if not their rather ham-fisted signatures.”
Senior origin-of-life researcher Robert Shapiro chimed in and criticized Sutherland’s work, saying: “Although as an exercise in chemistry this represents some very elegant work, this has nothing to do with the origin of life on Earth whatsoever….The chances that blind, undirected, inanimate chemistry would go out of its way in multiple steps and use of reagents in just the right sequence to form RNA is highly unlikely.” Meanwhile, a peer-reviewed paper in Accounts of Chemical Research took Sutherland and his team to task for using unrealistic, implausible pathways to generate the nucleotides:

Notwithstanding is merits, Sutherland’s approach is discounted by many in the bio-origins community. It is perhaps easy to see why. In their attempt to avoid the “water problem” for the glycosidic bond, Sutherland et al. drive themselves back into the “asphalt problem.” Their alternative synthesis requires human addition (at the right times) of high concentrations of two carbohydrates, glycolaldehyde and glyceraldehyde. These carbohydrates are too reactive to accumulate prebiotically, even with borate.

Reviewing Sutherland’s proposed route, Shapiro noted that it resembled a golfer, having played an 18 hole course, claiming that he had shown that the golf ball could have, through some combination of wind, rain, heating, cooling, dehydration, and ultraviolet irradiation played itself around the course without the golfer’s presence.

Perhaps recognizing this, Sutherland and his co-workers wrote, “Although the issue of temporally separated supplies of glycolaldehyde and glyceraldehyde remains a problem, a number of situations could have arisen that would result in the conditions of heating and progressive dehydration followed by cooling, rehydration and ultraviolet irradiation. Comparative assessment of these models is beyond the scope of this work.”

In Shapiro’s view, the need for “temporally separated supplies of glycolaldehyde and glyceraldehyde” is more than “a problem…beyond the scope” of this work. It is a fatal flaw.

(Stephen Benner, Hyo-Joong Kim, and Matthew A. Carrigan, “Asphalt, Water, and the Prebiotic Synthesis of Ribose, Ribonucleosides, and RNA,” Accounts of Chemical Research, Vol. 45:2025-2034 (2012))

Then, in 2015 Sutherland co-published a paper in Nature Chemistry purporting to create the precursors of pyrimidine nucleotides in a manner that also produced precursors to amino acids (which build proteins) and lipids. This led the journal Science to excitedly proclaim, “Researchers may have solved origin-of-life conundrum.” But the research had the same problems as before. Again Casey Luskin asked an ID-friendly biochemist to weigh in:

I read the article by Patel et al (2015) that appeared in Nature Chemistry. While it is full of fascinating chemistry, given all of the manipulation of pH, precursor mixes, temperature, metal co-ions, etc., it is beyond the pale to pretend that anything in this paper represents undirected pre-biotic chemistry. The only way this paper represents a solution to origin-of-life issues is for Patel et al. to be time travelers who manipulated the pre-biotic environment to produce the building blocks of life….To claim that the whole suite of “precursors of ribonucleotides, amino acids and lipids can all be derived by the reductive homologation of hydrogen cyanide and some of its derivatives” rests on how one defines what are plausible early Earth conditions. By admitting that the products vary depending upon reaction conditions and metallic co-ions, the idea of a one-pot synthesis is not viable in this scenario. They also stretch the concept of “plausibility” to a new extreme. While it is easy to imagine a series of pools of the appropriate conditions and with the appropriate precursor compounds all feeding into a single pool, it would be wrong to conclude that what we can imagine is science.

In short, from the prebiotic perspective, Sutherland’s research up to now has been implausible. This brings us to his new article in Nature Reviews Chemistry. He candidly discusses the gap between prebiotic chemistry, which happens without enzyme catalysts, and biological chemistry, which uses all kinds of biomolecules to regulate biochemistry:

Biology almost always relies on chemistry that does not proceed efficiently in the absence of catalysis, because this allows chemistry to be regulated by dialling various catalysts up or down. However, most prebiotic chemistry must proceed of its own accord, and this surely suggests that it must generally be different from the underlying chemistry used in biology….Nevertheless, despite the inevitable widespread differences between their individual reactions, prebiotic reaction networks ultimately have to transition into biochemical networks; hence, there must be some similarities between the two, if only at the level that practitioners of synthesis would view as strategic.

Sutherland thus views similarities between biological chemistry and blind, nonbiological (and possibly prebiotic) chemistry as hinting at how biological chemistry arose. As in his 2015 paper, in the 2017 review he outlines a scenario for generating the precursors of nucleotides, amino acids, and lipids. He seems aware that this scenario, requiring a long series of steps and the addition of chemical species at just the right stages, might not be convincing. He sums up his explanation as follows:

Remarkably, when these few reduction reactions are combined with several addition reactions and a dry-state phosphorylation (conditions for which were discovered nearly half a century ago but are still being rediscovered), a reaction network leading from hydrogen cyanide 2 (and a few of its derivatives) to the pyrimidine nucleotides, and to precursors to a dozen amino acids and glycerol phosphate lipids, can be defined. The reactions are all high yielding and lead to little else besides biomolecules or their precursors. It is not definitive proof that the building blocks of biology arose in this way, but it is compelling and indicates that the requirements for these reactions to take place should be used to constrain geochemical scenarios on the early Earth. A requirement for ultraviolet irradiation to generate hydrated electrons would rule out deep sea environments. This, along with strong bioenergetic and structural arguments, suggests that the idea that life originated at vents should, like the vents themselves, remain “In the deep bosom of the ocean buried.” The chemistry places certain demands on the environment of the early Earth: for example, the high concentrations of certain species through evaporation of solutions. Supporters welcome these demands as constraints that help refine primitive Earth scenarios. Detractors view them as unacceptable but must surely then demonstrate that other scenarios can be equally productive.

Aside from the fact that Sutherland’s model refutes the ever-popular “hydrothermal vent” hypothesis for the origin of life, don’t miss the last sentence where he commits the “burden of proof” logical fallacy. This basically says that if you view his scenario as “unacceptable” then you can’t dismiss it unless you can produce a scenario that’s better or “equally productive.” This is obviously fallacious: the merits of his hypothesis do not fall or rise on the ability of a given critic to provide a more “productive” explanation. After all, what if the entire project — the attempt to produce biomolecules in the absence of living organisms under natural earthlike conditions — is impossible? If that’s the case, then all explanations of prebiotic synthesis are ultimately doomed to fail, including our “best” attempts. Perhaps the fact that he ends on this note hints that he knows his case isn’t really all that strong.

Indeed, he reassures skeptics, saying: “The resemblance to modern biochemistry might not be obvious to the non-chemist at first, but it is to those with chemical acuity.” That’s another logical fallacy for you — the “genetic fallacy,” which attacks people personally, in this instance for being “non-chemists,” rather than their arguments.

In any case, the scenario of prebiotic synthesis he outlines once again suffers from the problems that his earlier work did. As Robert Shapiro put it, it is “highly unlikely” that “blind, undirected, inanimate chemistry would go out of its way in multiple steps and use of reagents in just the right sequence to form RNA.”

Sutherland’s reference in his paper’s title to “the end of the beginning” means he thinks we’re near the end of explaining how simple biological monomers might have arisen on the early earth in the absence of living organisms. That is step (1) (“the beginning”) in the list above. However, if Shapiro and other critics are correct, then Sutherland is probably still pretty far from the end of the beginning. And even if Sutherland were correct, he admits just how far a full-fledged explanation for step (1) is from explaining the origin of life:

[T]he prebiotic synthesis of building blocks — to which we have devoted so much of our time — only corresponds to a small increase in the complexity of the system and to no increase in its aliveness (a humbling thought).

Figure 3 in his review paper illustrates the distance that origin-of-life theorists must traverse to explain the chemical origin of life and the origin of LUCA — the last universal common ancestor of all living organisms:


Note the box indicating “The current state of the field.” It’s pretty far down the road of things needing to be explained. Thus, even in Sutherland’s overly optimistic view, they haven’t begun to explain how these prebiotic monomers could combine to form larger polymers such as RNA and then begin to explore sequence-space. This is, in his own words,  “A long, long way to LUCA.”

But what if somehow Sutherland et al. could solve all of these problems and could thus produce RNAs via unguided chemical reactions? Benner et al. 2012 (quoted above) point out why this would likely be a dead end for origin-of-life research:

[C]urrent experiments suggest that RNA molecules that catalyze the degradation of RNA are more likely to emerge from a library of random RNA molecules than RNA molecules that catalyze the template-directed synthesis of RNA, especially given cofactors (e.g., Mg2+). This could, of course, be a serious (and possibly fatal) flaw to the RNA-first hypothesis for bio-origins.

That’s a major issue. Even if you can produce random RNA molecules, you’re much more likely to produce RNAs that degrade other RNAs than those that can replicate new ones. This goes back to Stephen Meyer’s original criticism of Sutherland’s work: without intelligence to generate information and properly order nucleotides, you are exceedingly unlikely to get the needed sequences to produce a living, self-replicating organism. Or to put it in Sutherland’s language, only input from an intelligence can allow you to cross the necessity-contingency boundary and produce something that approaches “aliveness,” much less something that is “fully alive.”

In fact, Sutherland seems aware that this is a problem for naturalistic models. As he writes:

However, this synthesis is necessary to put the system on the right path, and knowing the steps that have been taken can give some hints as to the nature of the steps that follow, at least up to a point: the necessity-contingency boundary when the synthesis of macromolecules from multiple monomers reaches the stage in which only a fraction of all possible sequence variants can be sampled owing to the number of possible permutations exceeding the number of molecules.

In other words, even if we explain how to generate lots of RNAs, how do we get the very unlikely sequences that yield living organisms? The answer is staring him and other origin-of-life theorists in the face, but most aren’t willing to see it: In all of our experience with the origin of complex and specified information, only intelligent design can generate the sequence-specific digital information necessary to cross the necessity-contingency boundary and generate a self-replicating living organism.

Proto life and the case for design