J. Robert Oppenheimer
[note 1] (/ˈɒpənˌhaɪmər/; April 22, 1904 – February 18, 1967) was an American theoretical physicist. A professor of physics at the University of California, Berkeley, Oppenheimer was the wartime head of the Los Alamos Laboratory and is often credited as the "father of the atomic bomb" for his role in the Manhattan Project – the World War II undertaking that developed the first nuclear weapons. Oppenheimer was among those who observed the Trinity test in New Mexico, where the first atomic bomb was successfully detonated on July 16, 1945. He later remarked that the explosion brought to mind words from the Bhagavad Gita: "Now I am become Death, the destroyer of worlds."[2][note 2] In August 1945, the weapons were used in the atomic bombings of Hiroshima and Nagasaki.
After the war ended, Oppenheimer became chairman of the influential General Advisory Committee of the newly created United States Atomic Energy Commission. He used that position to lobby for international control of nuclear power to avert nuclear proliferation and a nuclear arms race with the Soviet Union. He opposed the development of the hydrogen bomb during a 1949–1950 governmental debate on the question and subsequently took stances on defense-related issues that provoked the ire of some factions in the U.S. government and military. During the Second Red Scare, those stances, together with past associations Oppenheimer had with people and organizations affiliated with the Communist Party, led to him suffering the revocation of his security clearance in a much-written-about hearing in 1954. Effectively stripped of his direct political influence, he continued to lecture, write, and work in physics. Nine years later, President John F. Kennedy awarded (and Lyndon B. Johnson presented) him with the Enrico Fermi Award as a gesture of political rehabilitation.
Oppenheimer's achievements in physics included the Born–Oppenheimer approximation for molecular wave functions, work on the theory of electrons and positrons, the Oppenheimer–Phillips process in nuclear fusion, and the first prediction of quantum tunneling. With his students he also made important contributions to the modern theory of neutron stars and black holes, as well as to quantum mechanics, quantum field theory, and the interactions of cosmic rays. As a teacher and promoter of science, he is remembered as a founding father of the American school of theoretical physics that gained world prominence in the 1930s. After World War II, he became director of the Institute for Advanced Study in Princeton, New Jersey.
Childhood and education
J. Robert Oppenheimer was born in New York City on April 22, 1904,[note 1][7] to Ella (née Friedman), a painter, and Julius Seligmann Oppenheimer, a wealthy textile importer. Born in Hanau, Hesse-Nassau, Prussia, Germany, Julius came to the United States as a teenager in 1888 with few resources, no money, no baccalaureate studies, and no knowledge of the English language. He was hired by a textile company and within a decade was an executive there, eventually becoming wealthy.[8] The Oppenheimers were both secular Ashkenazi Jews; his father was German Jewish, and his mother, who was from New York, descended from a German Jewish family that had lived in the U.S. since the 1840s.[9] In 1912, the family moved to an apartment on the 11th floor of 155 Riverside Drive, near West 88th Street, Manhattan, an area known for luxurious mansions and townhouses.[7] Their art collection included works by Pablo Picasso and Édouard Vuillard, and at least three original paintings by Vincent van Gogh.[10] Robert had a younger brother, Frank, who also became a physicist.[11]
Oppenheimer was initially educated at Alcuin Preparatory School; in 1911, he entered the Ethical Culture Society School.[12] This had been founded by Felix Adler to promote a form of ethical training based on the Ethical Culture movement, whose motto was "Deed before Creed". His father had been a member of the Society for many years, serving on its board of trustees from 1907 to 1915.[13] Oppenheimer was a versatile scholar, interested in English and French literature, and particularly in mineralogy.[14] He completed the third and fourth grades in one year and skipped half of the eighth grade.[12] During his final year, he became interested in chemistry.[15] He entered Harvard College one year after graduation, at age 18, because he suffered an attack of colitis while prospecting in Joachimstal during a family summer vacation in Europe. To help him recover from the illness, his father enlisted the help of his English teacher Herbert Smith who took him to New Mexico, where Oppenheimer fell in love with horseback riding and the southwestern United States.[16]
Oppenheimer majored in chemistry, but Harvard required science students to also study history, literature, and philosophy or mathematics. He compensated for his late start by taking six courses each term and was admitted to the undergraduate honor society Phi Beta Kappa. In his first year, he was admitted to graduate standing in physics on the basis of independent study, which meant he was not required to take the basic classes and could enroll instead in advanced ones. He was attracted to experimental physics by a course on thermodynamics that was taught by Percy Bridgman. He graduated summa cum laude in three years.[17]
Studies in Europe
In 1924, Oppenheimer was informed that he had been accepted into Christ's College, Cambridge. He wrote to Ernest Rutherford requesting permission to work at the Cavendish Laboratory. Bridgman provided Oppenheimer with a recommendation, which conceded that Oppenheimer's clumsiness in the laboratory made it apparent his forte was not experimental but rather theoretical physics. Rutherford was unimpressed, but Oppenheimer went to Cambridge in the hope of landing another offer.[18] He was ultimately accepted by J. J. Thomson on condition that he complete a basic laboratory course.[19] He developed an antagonistic relationship with his tutor, Patrick Blackett, who was only a few years his senior. While on vacation, as recalled by his friend Francis Fergusson, Oppenheimer once confessed that he had left an apple doused with noxious chemicals on Blackett's desk. While Fergusson's account is the only detailed version of this event, Oppenheimer's parents were alerted by the university authorities who considered placing him on probation, a fate prevented by his parents successfully lobbying the authorities.[20]
Oppenheimer was a tall, thin chain smoker,[21] who often neglected to eat during periods of intense thought and concentration. Many of his friends described him as having self-destructive tendencies. A disturbing event occurred when he took a vacation from his studies in Cambridge to meet up with Fergusson in Paris. Fergusson noticed that Oppenheimer was not well. To help distract him from his depression, Fergusson told Oppenheimer that he (Fergusson) was to marry his girlfriend Frances Keeley. Oppenheimer did not take the news well. He jumped on Fergusson and tried to strangle him. Although Fergusson easily fended off the attack, the episode convinced him of Oppenheimer's deep psychological troubles. Throughout his life, Oppenheimer was plagued by periods of depression,[22][23] and he once told his brother, "I need physics more than friends".[24]
In 1926, Oppenheimer left Cambridge for the University of Göttingen to study under Max Born. Göttingen was one of the world's leading centers for theoretical physics. Oppenheimer made friends who went on to great success, including Werner Heisenberg, Pascual Jordan, Wolfgang Pauli, Paul Dirac, Enrico Fermi and Edward Teller. He was known for being too enthusiastic in discussion, sometimes to the point of taking over seminar sessions.[25] This irritated some of Born's other students so much that Maria Goeppert presented Born with a petition signed by herself and others threatening a boycott of the class unless he made Oppenheimer quiet down. Born left it out on his desk where Oppenheimer could read it, and it was effective without a word being said.[26]
He obtained his Doctor of Philosophy degree in March 1927 at age 23, supervised by Born.[27] After the oral exam, James Franck, the professor administering, reportedly said, "I'm glad that's over. He was on the point of questioning me."[4] Oppenheimer published more than a dozen papers at Göttingen, including many important contributions to the new field of quantum mechanics. He and Born published a famous paper on the Born–Oppenheimer approximation, which separates nuclear motion from electronic motion in the mathematical treatment of molecules, allowing nuclear motion to be neglected to simplify calculations. It remains his most cited work.[28]
Early professional work
Educational work
Oppenheimer was awarded a United States National Research Council fellowship to the California Institute of Technology (Caltech) in September 1927. Bridgman also wanted him at Harvard, so a compromise was reached whereby he split his fellowship for the 1927–28 academic year between Harvard in 1927 and Caltech in 1928.[29] At Caltech he struck up a close friendship with Linus Pauling, and they planned to mount a joint attack on the nature of the chemical bond, a field in which Pauling was a pioneer, with Oppenheimer supplying the mathematics and Pauling interpreting the results. Both the collaboration and their friendship ended when Pauling began to suspect Oppenheimer of becoming too close to his wife, Ava Helen Pauling. Once, when Pauling was at work, Oppenheimer had arrived at their home and invited Ava Helen to join him on a tryst in Mexico. Though she refused and reported the incident to her husband,[30] the invitation, and her apparent nonchalance about it, disquieted Pauling and he ended his relationship with Oppenheimer. Oppenheimer later invited him to become head of the Chemistry Division of the Manhattan Project, but Pauling refused, saying he was a pacifist.[31]
In the autumn of 1928, Oppenheimer visited Paul Ehrenfest's institute at the University of Leiden, the Netherlands, where he impressed by giving lectures in Dutch, despite having little experience with the language. There he was given the nickname of Opje,[32] later anglicized by his students as "Oppie".[33] From Leiden he continued on to the Swiss Federal Institute of Technology (ETH) in Zurich to work with Wolfgang Pauli on quantum mechanics and the continuous spectrum. Oppenheimer respected and liked Pauli and may have emulated his personal style as well as his critical approach to problems.[34]
On returning to the United States, Oppenheimer accepted an associate professorship from the University of California, Berkeley, where Raymond T. Birge wanted him so badly that he expressed a willingness to share him with Caltech.[31]
Before he began his Berkeley professorship, Oppenheimer was diagnosed with a mild case of tuberculosis and spent some weeks with his brother Frank at a New Mexico ranch, which he leased and eventually purchased. When he heard the ranch was available for lease, he exclaimed, "Hot dog!", and later called it Perro Caliente, literally "hot dog" in Spanish.[35] Later he used to say that "physics and desert country" were his "two great loves".[36] He recovered from tuberculosis and returned to Berkeley, where he prospered as an advisor and collaborator to a generation of physicists who admired him for his intellectual virtuosity and broad interests. His students and colleagues saw him as mesmerizing: hypnotic in private interaction, but often frigid in more public settings. His associates fell into two camps: one that saw him as an aloof and impressive genius and aesthete, the other that saw him as a pretentious and insecure poseur.[37] His students almost always fell into the former category, adopting his walk, speech, and other mannerisms, and even his inclination for reading entire texts in their original languages.[38] Hans Bethe said of him:
Probably the most important ingredient he brought to his teaching was his exquisite taste. He always knew what were the important problems, as shown by his choice of subjects. He truly lived with those problems, struggling for a solution, and he communicated his concern to the group. In its heyday, there were about eight or ten graduate students in his group and about six Post-doctoral Fellows. He met this group once a day in his office and discussed with one after another the status of the student's research problem. He was interested in everything, and in one afternoon they might discuss quantum electrodynamics, cosmic rays, electron pair production and nuclear physics.[39]
He worked closely with Nobel Prize-winning experimental physicist Ernest O. Lawrence and his cyclotron pioneers, helping them understand the data their machines were producing at the Lawrence Berkeley National Laboratory.[40] In 1936, Berkeley promoted him to full professor at a salary of $3,300 a year (equivalent to $64,000 in 2021). In return he was asked to curtail his teaching at Caltech, so a compromise was reached whereby Berkeley released him for six weeks each year, enough to teach one term at Caltech.[41]
Scientific work
Oppenheimer did important research in theoretical astronomy (especially as related to general relativity and nuclear theory), nuclear physics, spectroscopy, and quantum field theory, including its extension into quantum electrodynamics. The formal mathematics of relativistic quantum mechanics also attracted his attention, although he doubted its validity. His work predicted many later finds, which include the neutron, meson and neutron star.[42]
Initially, his major interest was the theory of the continuous spectrum and his first published paper, in 1926, concerned the quantum theory of molecular band spectra. He developed a method to carry out calculations of its transition probabilities. He calculated the photoelectric effect for hydrogen and X-rays, obtaining the absorption coefficient at the K-edge. His calculations accorded with observations of the X-ray absorption of the sun, but not helium. Years later it was realized that the sun was largely composed of hydrogen and that his calculations were indeed correct.[43][44]
Oppenheimer also made important contributions to the theory of cosmic ray showers and started work that eventually led to descriptions of quantum tunneling. In 1931, he co-wrote a paper on the "Relativistic Theory of the Photoelectric Effect" with his student Harvey Hall,[45] in which, based on empirical evidence, he correctly disputed Dirac's assertion that two of the energy levels of the hydrogen atom have the same energy. Subsequently, one of his doctoral students, Willis Lamb, determined that this was a consequence of what became known as the Lamb shift, for which Lamb was awarded the Nobel Prize in physics in 1955.[42]
With his first doctoral student, Melba Phillips, Oppenheimer worked on calculations of artificial radioactivity under bombardment by deuterons. When Ernest Lawrence and Edwin McMillan bombarded nuclei with deuterons they found the results agreed closely with the predictions of George Gamow, but when higher energies and heavier nuclei were involved, the results did not conform to the theory. In 1935, Oppenheimer and Phillips worked out a theory—now known as the Oppenheimer–Phillips process—to explain the results; this theory is still in use today.[46]
As early as 1930, Oppenheimer wrote a paper that essentially predicted the existence of the positron. This was after a paper by Paul Dirac proposed that electrons could have both a positive charge and negative energy. Dirac's paper introduced an equation, known as the Dirac equation, which unified quantum mechanics, special relativity and the then-new concept of electron spin, to explain the Zeeman effect.[47] Oppenheimer, drawing on the body of experimental evidence, rejected the idea that the predicted positively charged electrons were protons. He argued that they would have to have the same mass as an electron, whereas experiments showed that protons were much heavier than electrons. Two years later, Carl David Anderson discovered the positron, for which he received the 1936 Nobel Prize in Physics.[48]
In the late 1930s, Oppenheimer became interested in astrophysics, most likely through his friendship with Richard Tolman, resulting in a series of papers. In the first of these, a 1938 paper co-written with Robert Serber entitled "On the Stability of Stellar Neutron Cores",[49] Oppenheimer explored the properties of white dwarfs. This was followed by a paper co-written with one of his students, George Volkoff, "On Massive Neutron Cores",[50] in which they demonstrated that there was a limit, the so-called Tolman–Oppenheimer–Volkoff limit, to the mass of stars beyond which they would not remain stable as neutron stars and would undergo gravitational collapse. Finally, in 1939, Oppenheimer and another of his students, Hartland Snyder, produced a paper "On Continued Gravitational Contraction",[51] which predicted the existence of what are today known as black holes. After the Born–Oppenheimer approximation paper, these papers remain his most cited, and were key factors in the rejuvenation of astrophysical research in the United States in the 1950s, mainly by John A. Wheeler.[52]
Oppenheimer's papers were considered difficult to understand even by the standards of the abstract topics he was expert in. He was fond of using elegant, if extremely complex, mathematical techniques to demonstrate physical principles, though he was sometimes criticized for making mathematical mistakes, presumably out of haste. "His physics was good", said his student Snyder, "but his arithmetic awful".[42]
After World War II, Oppenheimer published only five scientific papers, one of which was in biophysics, and none after 1950. Murray Gell-Mann, a later Nobelist who, as a visiting scientist, worked with him at the Institute for Advanced Study in 1951, offered this opinion:
He didn't have Sitzfleisch, 'sitting flesh,' when you sit on a chair. As far as I know, he never wrote a long paper or did a long calculation, anything of that kind. He didn't have patience for that; his own work consisted of little aperçus, but quite brilliant ones. But he inspired other people to do things, and his influence was fantastic.[53]
Oppenheimer's diverse interests sometimes interrupted his focus on science. He liked things that were difficult, and since much of the scientific work appeared easy for him, he developed an interest in the mystical and the cryptic. In 1933, he learned Sanskrit and met the Indologist Arthur W. Ryder at Berkeley. He eventually read the Bhagavad Gita and the Upanishads in the original Sanskrit, and deeply pondered over them. He later cited the Gita as one of the books that most shaped his philosophy of life.[54][55]
His close confidant and colleague, Nobel Prize winner Isidor Rabi, later gave his own interpretation:
Oppenheimer was overeducated in those fields, which lie outside the scientific tradition, such as his interest in religion, in the Hindu religion in particular, which resulted in a feeling of mystery of the universe that surrounded him like a fog. He saw physics clearly, looking toward what had already been done, but at the border he tended to feel there was much more of the mysterious and novel than there actually was ... [he turned] away from the hard, crude methods of theoretical physics into a mystical realm of broad intuition.[56]
In spite of this, observers such as Nobel Prize-winning physicist Luis Alvarez have suggested that if he had lived long enough to see his predictions substantiated by experiment, Oppenheimer might have won a Nobel Prize for his work on gravitational collapse, concerning neutron stars and black holes.[57][58] In retrospect, some physicists and historians consider this to be his most important contribution, though it was not taken up by other scientists in his own lifetime.[59] The physicist and historian Abraham Pais once asked Oppenheimer what he considered to be his most important scientific contributions; Oppenheimer cited his work on electrons and positrons, not his work on gravitational contraction.[60] Oppenheimer was nominated for the Nobel Prize for physics three times, in 1946, 1951 and 1967, but never won.[61][62]
Los Alamos
On October 9, 1941, two months before the United States entered World War II, President Franklin D. Roosevelt approved a crash program to develop an atomic bomb.[91] In May 1942, National Defense Research Committee Chairman James B. Conant, who had been one of Oppenheimer's lecturers at Harvard, invited Oppenheimer to take over work on fast neutron calculations, a task that Oppenheimer threw himself into with full vigor. He was given the title "Coordinator of Rapid Rupture", which specifically referred to the propagation of a fast neutron chain reaction in an atomic bomb. One of his first acts was to host a summer school for bomb theory at his building in Berkeley. The mix of European physicists and his own students—a group including Robert Serber, Emil Konopinski, Felix Bloch, Hans Bethe and Edward Teller—kept themselves busy by calculating what needed to be done, and in what order, to make the bomb.[92]
In June 1942, the US Army established the Manhattan Project to handle its part in the atom bomb project and began the process of transferring responsibility from the Office of Scientific Research and Development to the military.[94] In September, Groves was appointed director of what became known as the Manhattan Project.[95] He selected Oppenheimer to head the project's secret weapons laboratory. This was a choice that surprised many because Oppenheimer had left-wing political views and no record as a leader of large projects. Groves was concerned by the fact that Oppenheimer did not have a Nobel Prize and might not have had the prestige to direct fellow scientists.[96] However, he was impressed by Oppenheimer's singular grasp of the practical aspects of designing and constructing an atomic bomb, and by the breadth of his knowledge. As a military engineer, Groves knew that this would be vital in an interdisciplinary project that would involve not just physics, but chemistry, metallurgy, ordnance and engineering. Groves also detected in Oppenheimer something that many others did not, an "overweening ambition" that Groves reckoned would supply the drive necessary to push the project to a successful conclusion. Isidor Rabi considered the appointment "a real stroke of genius on the part of General Groves, who was not generally considered to be a genius".[97]
Oppenheimer and Groves decided that for security and cohesion they needed a centralized, secret research laboratory in a remote location. Scouting for a site in late 1942, Oppenheimer was drawn to New Mexico, not far from his ranch. On November 16, 1942, Oppenheimer, Groves and others toured a prospective site. Oppenheimer feared that the high cliffs surrounding the site would make his people feel claustrophobic, while the engineers were concerned with the possibility of flooding. He then suggested and championed a site that he knew well: a flat mesa near Santa Fe, New Mexico, which was the site of a private boys' school called the Los Alamos Ranch School. The engineers were concerned about the poor access road and the water supply but otherwise felt that it was ideal.[98] The Los Alamos Laboratory was built on the site of the school, taking over some of its buildings, while many new buildings were erected in great haste. At the laboratory, Oppenheimer assembled a group of the top physicists of the time, which he referred to as the "luminaries".[99]
Los Alamos was initially supposed to be a military laboratory, and Oppenheimer and other researchers were to be commissioned into the Army. He went so far as to order himself a lieutenant colonel's uniform and take the Army physical test, which he failed. Army doctors considered him underweight at 128 pounds (58 kg), diagnosed his chronic cough as tuberculosis and were concerned about his chronic lumbosacral joint pain.[100] The plan to commission scientists fell through when Robert Bacher and Isidor Rabi balked at the idea. Conant, Groves, and Oppenheimer devised a compromise whereby the laboratory was operated by the University of California under contract to the War Department.[101] It soon turned out that Oppenheimer had hugely underestimated the magnitude of the project; Los Alamos grew from a few hundred people in 1943 to over 6,000 in 1945.[100]
Oppenheimer at first had difficulty with the organizational division of large groups, but rapidly learned the art of large-scale administration after he took up permanent residence on the mesa. He was noted for his mastery of all scientific aspects of the project and for his efforts to control the inevitable cultural conflicts between scientists and the military. He was an iconic figure to his fellow scientists, as much a symbol of what they were working toward as a scientific director. Victor Weisskopf put it thus:
Oppenheimer directed these studies, theoretical and experimental, in the real sense of the words. Here his uncanny speed in grasping the main points of any subject was a decisive factor; he could acquaint himself with the essential details of every part of the work. He did not direct from the head office. He was intellectually and physically present at each decisive step. He was present in the laboratory or in the seminar rooms, when a new effect was measured, when a new idea was conceived. It was not that he contributed so many ideas or suggestions; he did so sometimes, but his main influence came from something else. It was his continuous and intense presence, which produced a sense of direct participation in all of us; it created that unique atmosphere of enthusiasm and challenge that pervaded the place throughout its time.[102]
At this point in the war, there was considerable anxiety among the scientists that the Germans might be making faster progress on an atomic weapon than they were.[103][104] In a letter dated May 25, 1943, Oppenheimer responded to a proposal from Fermi to use radioactive materials to poison German food supplies. Oppenheimer asked Fermi whether he could produce enough strontium without letting too many in on the secret. Oppenheimer continued, "I think we should not attempt a plan unless we can poison food sufficient to kill a half a million men."[105]
In 1943 development efforts were directed to a plutonium gun-type fission weapon called "Thin Man". Initial research on the properties of plutonium was done using cyclotron-generated plutonium-239, which was extremely pure but could only be created in tiny amounts. When Los Alamos received the first sample of plutonium from the X-10 Graphite Reactor in April 1944 a problem was discovered: reactor-bred plutonium had a higher concentration of plutonium-240, making it unsuitable for use in a gun-type weapon.[106] In July 1944, Oppenheimer abandoned the gun design in favor of an implosion-type weapon. Using chemical explosive lenses, a sub-critical sphere of fissile material could be squeezed into a smaller and denser form. The metal needed to travel only very short distances, so the critical mass would be assembled in much less time.[107] In August 1944 Oppenheimer implemented a sweeping reorganization of the Los Alamos laboratory to focus on implosion.[108] He concentrated the development efforts on the gun-type device, a simpler design that only had to work with uranium-235, in a single group, and this device became Little Boy in February 1945.[109] After a mammoth research effort, the more complex design of the implosion device, known as the "Christy gadget" after Robert Christy, another student of Oppenheimer's,[110] was finalized in a meeting in Oppenheimer's office on February 28, 1945.[111]
In May 1945 an Interim Committee was created to advise and report on wartime and postwar policies regarding the use of nuclear energy. The Interim Committee in turn established a scientific panel consisting of Arthur Compton, Fermi, Lawrence and Oppenheimer to advise it on scientific issues. In its presentation to the Interim Committee, the scientific panel offered its opinion not just on the likely physical effects of an atomic bomb, but on its likely military and political impact.[112] This included opinions on such sensitive issues as whether or not the Soviet Union should be advised of the weapon in advance of its use against Japan.[113]
Trinity
The joint work of the scientists at Los Alamos resulted in the world's first nuclear explosion, near Alamogordo, New Mexico, on July 16, 1945. Oppenheimer had given the site the codename "Trinity" in mid-1944 and said later that it was from one of John Donne's Holy Sonnets. According to the historian Gregg Herken, this naming could have been an allusion to Jean Tatlock, who had committed suicide a few months previously and had in the 1930s introduced Oppenheimer to Donne's work.[115]
Oppenheimer later recalled that, while witnessing the explosion, he thought of a verse from the Bhagavad Gita (XI,12): divi sūrya-sahasrasya bhaved yugapad utthitā yadi bhāḥ sadṛṥī sā syād bhāsas tasya mahātmanaḥ[116]
If the radiance of a thousand suns were to burst at once into the sky, that would be like the splendor of the mighty one ...[5][117]
Years later he would explain that another verse had also entered his head at that time: namely, the famous verse: "kālo'smi lokakṣayakṛtpravṛddho lokānsamāhartumiha pravṛttaḥ" (XI,32),[118] which he translated as "I am become Death, the destroyer of worlds."[note 2]
In 1965, when he was persuaded to quote again for a television broadcast, he said:
We knew the world would not be the same. A few people laughed, a few people cried. Most people were silent. I remembered the line from the Hindu scripture, the Bhagavad Gita; Vishnu is trying to persuade the Prince that he should do his duty and, to impress him, takes on his multi-armed form and says, 'Now I am become Death, the destroyer of worlds.' I suppose we all thought that, one way or another.[3]
Among those present with Oppenheimer in the control bunker at the site were his brother Frank and Brigadier General Thomas Farrell. When Jeremy Bernstein asked Frank what Robert's first words after the test had been, the answer was "I guess it worked."[119] Farrell summarized Robert's reaction as follows:
Dr. Oppenheimer, on whom had rested a very heavy burden, grew tenser as the last seconds ticked off. He scarcely breathed. He held on to a post to steady himself. For the last few seconds, he stared directly ahead and then when the announcer shouted "Now!" and there came this tremendous burst of light followed shortly thereafter by the deep growling roar of the explosion, his face relaxed into an expression of tremendous relief.[120]
Physicist Isidor Rabi noticed Oppenheimer's disconcerting triumphalism: "I'll never forget his walk; I'll never forget the way he stepped out of the car ... his walk was like High Noon ... this kind of strut. He had done it."[121] At an assembly at Los Alamos on August 6 (the evening of the atomic bombing of Hiroshima), Oppenheimer took to the stage and clasped his hands together "like a prize-winning boxer" while the crowd cheered. He noted his regret the weapon had not been available in time to use against Nazi Germany.[122] However, he and many of the project staff were very upset about the bombing of Nagasaki, as they did not feel the second bomb was necessary from a military point of view.[123] He traveled to Washington on August 17 to hand-deliver a letter to Secretary of War Henry L. Stimson expressing his revulsion and his wish to see nuclear weapons banned.[124] In October 1945 Oppenheimer was granted an interview with President Harry S. Truman. The meeting, however, went badly, after Oppenheimer remarked he felt he had "blood on my hands". The remark infuriated Truman and put an end to the meeting. Truman later told his Undersecretary of State Dean Acheson "I don't want to see that son-of-a-bitch in this office ever again."[125]
For his services as director of Los Alamos, Oppenheimer was awarded the Medal for Merit from President Harry S. Truman in 1946.[126]
Final years and death
The frontiers of science are separated now by long years of study, by specialized vocabularies, arts, techniques, and knowledge from the common heritage even of a most civilized society; and anyone working at the frontier of such science is in that sense a very long way from home, a long way too from the practical arts that were its matrix and origin, as indeed they were of what we today call art.
Robert Oppenheimer, "Prospects in the Arts and Sciences" in Man's Right to Knowledge[220]
Starting in 1954, Oppenheimer lived for several months of the year on the island of Saint John in the U.S. Virgin Islands. In 1957, he purchased a 2-acre (0.81 ha) tract of land on Gibney Beach, where he built a spartan home on the beach.[221] He spent a considerable amount of time sailing with his daughter Toni and wife Kitty.[222]
Oppenheimer's first public appearance following the stripping of his security clearance was a lecture titled "Prospects in the Arts and Sciences" for the Columbia University Bicentennial radio show Man's Right to Knowledge, in which he outlined his philosophy and his thoughts on the role of science in the modern world.[223][224] He had been selected for the final episode of the lecture series two years prior to the security hearing, though the university remained adamant that he stay on even after the controversy.[225]
In February 1955, the president of the University of Washington, Henry Schmitz, abruptly cancelled an invitation to Oppenheimer to deliver a series of lectures there. Schmitz's decision caused an uproar among the students; 1,200 of them signed a petition protesting the decision, and Schmitz was burned in effigy. While they marched in protest, the state of Washington outlawed the Communist Party, and required all government employees to swear a loyalty oath. Edwin Albrecht Uehling, the chairman of the physics department and a colleague of Oppenheimer's from Berkeley, appealed to the university senate, and Schmitz's decision was overturned by a vote of 56-40. Oppenheimer stopped briefly in Seattle to change planes on a trip to Oregon, and was joined for coffee during his layover by several University of Washington faculty, but Oppenheimer never lectured there.[226][227]
Oppenheimer was increasingly concerned about the potential danger that scientific inventions could pose to humanity. He joined with Albert Einstein, Bertrand Russell, Joseph Rotblat and other eminent scientists and academics to establish what would eventually, in 1960, become the World Academy of Art and Science. Significantly, after his public humiliation, he did not sign the major open protests against nuclear weapons of the 1950s, including the Russell–Einstein Manifesto of 1955, nor, though invited, did he attend the first Pugwash Conferences on Science and World Affairs in 1957.[228]
In his speeches and public writings, Oppenheimer continually stressed the difficulty of managing the power of knowledge in a world in which the freedom of science to exchange ideas was more and more hobbled by political concerns. Oppenheimer delivered the Reith Lectures on the BBC in 1953, which were subsequently published as Science and the Common Understanding.[229] In 1955 Oppenheimer published The Open Mind, a collection of eight lectures that he had given since 1946 on the subject of nuclear weapons and popular culture. Oppenheimer rejected the idea of nuclear gunboat diplomacy. "The purposes of this country in the field of foreign policy", he wrote, "cannot in any real or enduring way be achieved by coercion". In 1957 the philosophy and psychology departments at Harvard invited Oppenheimer to deliver the William James Lectures. An influential group of Harvard alumni led by Edwin Ginn that included Archibald Roosevelt protested against the decision.[230] Some 1,200 people packed into Sanders Theatre to hear Oppenheimer's six lectures, entitled "The Hope of Order".[228] Oppenheimer delivered the Whidden Lectures at McMaster University in 1962, and these were published in 1964 as The Flying Trapeze: Three Crises for Physicists.[231]Deprived of political power, Oppenheimer continued to lecture, write and work on physics. He toured Europe and Japan, giving talks about the history of science, the role of science in society, and the nature of the universe.[232] In September 1957, France made him an Officer of the Legion of Honor,[233] and on May 3, 1962, he was elected a Foreign Member of the Royal Society in Britain.[234][235] At the urging of many of Oppenheimer's political friends who had ascended to power, President John F. Kennedy awarded Oppenheimer the Enrico Fermi Award in 1963 as a gesture of political rehabilitation. Edward Teller, the winner of the previous year's award, had also recommended Oppenheimer receive it, in the hope that it would heal the rift between them.[236] A little over a week after Kennedy's assassination, his successor, President Lyndon Johnson, presented Oppenheimer with the award, "for contributions to theoretical physics as a teacher and originator of ideas, and for leadership of the Los Alamos Laboratory and the atomic energy program during critical years".[237] Oppenheimer told Johnson: "I think it is just possible, Mr. President, that it has taken some charity and some courage for you to make this award today."[238]
The rehabilitation implied by the award was partly symbolic, as Oppenheimer still lacked a security clearance and could have no effect on official policy, but the award came with a $50,000 tax-free stipend, and its award outraged many prominent Republicans in Congress. The late President Kennedy's widow Jacqueline, still living in the White House, made it a point to meet with Oppenheimer to tell him how much her husband had wanted him to have the medal.[239] While still a senator in 1959, Kennedy had been instrumental in voting to narrowly deny Oppenheimer's enemy Lewis Strauss a coveted government position as Secretary of Commerce, effectively ending Strauss's political career. This was partly due to lobbying by the scientific community on behalf of Oppenheimer.[240]
Oppenheimer was a chain smoker who was diagnosed with throat cancer in late 1965. After inconclusive surgery, he underwent unsuccessful radiation treatment and chemotherapy late in 1966.[241] He fell into a coma on February 15, 1967, and died at his home in Princeton, New Jersey, on February 18, aged 62. A memorial service was held a week later at Alexander Hall on the campus of Princeton University. The service was attended by 600 of his scientific, political and military associates that included Bethe, Groves, Kennan, Lilienthal, Rabi, Smyth and Wigner. His brother Frank and the rest of his family were also there, as was the historian Arthur M. Schlesinger, Jr., the novelist John O'Hara, and George Balanchine, the director of the New York City Ballet. Bethe, Kennan and Smyth gave brief eulogies.[242] Oppenheimer's body was cremated and his ashes were placed into an urn. His wife Kitty took the ashes to St. John and dropped the urn into the sea, within sight of the beach house.[243]
In October 1972, Kitty died aged 62 from an intestinal infection that was complicated by a pulmonary embolism. Oppenheimer's ranch in New Mexico was then inherited by their son Peter, and the beach property was inherited by their daughter Katherine "Toni" Oppenheimer Silber. Toni was refused security clearance for her chosen vocation as a United Nations translator after the FBI brought up the old charges against her father. In January 1977 (three months after the end of her second marriage), she committed suicide aged 32; her ex-husband found her hanging from a beam in her family beach house.[244] She left the property to "the people of St. John for a public park and recreation area".[245] The original house was built too close to the coast and succumbed to a hurricane. Today the Virgin Islands Government maintains a Community Center in the area.[246]