What Origin-of-Life Researchers Forget
Evolution News & Views January 6, 2016 3:31 AM
The origin-of-life field is often guilty of ascribing personality to molecules. You see this in the popular literature, but even the serious scientists slip into the habit. It takes the form of an invisible hand, directing the assembly of multiple parts like a foreman at a construction site. Need a membrane? Here are some fatty acids that can make a simple one for starters. Need a replicator? This RNA isn't great, but he can learn. Need proteins? We found some in this meteorite that are willing to lend a left hand.
A more realistic image would be an arena of dead runners surrounded by hurdles as high as mountains. They don't "want" to leap over the hurdles and win a race to become alive, because they can't. They're dead. So are molecules often dubbed "The building blocks of life." They have no interest in jumping over hurdles on a path to a protocell. Much as the origin-of-life researcher wants them to win the Protocell Prize, they couldn't care less. They'll just do whatever the unguided forces of nature make them do.
The only way dead runners can get over a hurdle without intelligent help is to wait for an earthquake, a tsunami, or a meteorite to launch them. With a lot of luck, one runner might land on the other side of the first hurdle. But then he won't have any interest in continuing on over the second hurdle. He is incapable of wanting.
This is the only realistic way for an origin-of-life researcher to approach the problem: molecules are dead things. They don't want to become alive. No amount of coaxing, sweet-talking, or intelligent interference will make them want to live. They will behave like the lifeless things they are, blindly following the laws of chemistry and physics, just as dead runners will obey the law of gravity and lie on the ground unless launched by a force strong enough to overcome gravity. Even if they make it over the top, they will fall back on the ground without any interest in making it over the next hurdle. This pessimistic outlook is true even after Darwinian natural selection enters the picture. Natural selection is just as dead as the molecules. It must not be personified; it has no goal, wish, or plan.
Origin-of-life researchers think they have done their job if they find a possible earthquake or tsunami that might get one body over a hurdle. This "sheds light" on the problem, they say. Different labs find additional earthquakes and tsunamis to help with the other hurdles. Accident #1 "might" work, accident #2 "might" get a body over the next hurdle, and so on. The series of lucky accidents "sheds light" on how life got here, the materialists assure us. They feel justified making up various scenarios because they think, "We're here, aren't we? It must have happened somehow." Having abandoned intelligence as a cause, they're stuck.
With this in mind, let's examine a paper in Current Biology by Saha and Chen, "Origin of Life: Protocells Red in Tooth and Claw." First, they recognize a couple of hurdles:
What is life, and how can we make it? NASA's Exobiology Program uses the working definition of life as "a self-sustaining chemical system capable of Darwinian evolution". Several research labs have undertaken the task of synthesizing an organism that meets this definition. It seems clear that some propagating genetic information is necessary, whether it is a self-replicating RNA or a system of enzymes and DNA. In addition, there are convincing arguments for encapsulating the genetic system inside self-replicating vesicles, creating a primitive entity called a 'protocell'. [Emphasis added.]
There are many more hurdles in the track beyond the two they mention, (1) genetic information and (2) a container. But did you catch the intelligent interference? They speak of labs run by intelligent agents who "have undertaken the task of synthesizing an organism." They ask, "How can we make it?" It's not their job, but even if they were to succeed, it would prove intelligent design, not the origin of life by natural processes.
Origin of life research is sometimes abbreviated OOL. According to their definition, NOODLE would be more apt: Naturalistic Origin of Darwinian Life Evolving. Their job is going to be harder than pushing a NOODLE through a needle. They have to keep their intelligent hands off, and the noodle doesn't want to go there. "But," they might reply, "what if there are billions of noodles and billions of needles? One or more might wash through the eye of a needle by chance and natural forces." OK, but there are more needles on the pathway to life, and the noodles are still dead, uncaring, and uncared for.
Saha and Chen make a big deal of protocell models based on phospholipid membranes (fat bubbles). These could encapsulate floating molecules of DNA or RNA and then merge with other fat bubbles, creating a game of competition. Follow the personification in their figure caption:
(A) A scheme for evolution of protocells from coacervates. (B) In the competition among protocells, the 'rich get richer' as the larger vesicle grows more quickly and fuses with the feeder vesicles. (C) In a virus-like strategy, a parasitic genome (red) lurks within a small vesicle and awaits fusion. Once inside an actively metabolizing protocell, the parasitic genome replicates rapidly and overtakes the host's genome (black).
It's hard to take this seriously. The molecules don't want to get rich. They aren't competing. They aren't lurking, awaiting, and overtaking. If the richest fat bubble outlasts the others, the only ones celebrating are the researchers.
It's not necessary to wade through the weeds of their paper, hearing about "zwitterionic or anionic membranes" and other jargon, because their approach is fallacious throughout. They are hoisting the dead bodies over the hurdles against their natural inclinations. Example:
Therefore, the membrane composition became increasingly dominated by the (non-phospholipid) cationic lipid, which could not form stable vesicles on its own. In addition, there was no way to add more nucleotides and enzyme. Ultimately, a mechanism to supply phospholipids and nucleotides to the protocells was required.
The solution to this problem has recently been reported by the same group, through delivery of nucleotides, enzyme and phospholipids by fusion of 'feeder' vesicles to the protocells....
They picture the fat bubbles cannibalizing one another. No kidding: "These protocell cannibals thus gain direct access to their victim's contents.... Vesicle cannibalism raises the stakes of the competition between protocells -- inactive protocells do not merely fail to grow, they are actually eaten by others."
These fat bubbles are sheer barbarians! They're waging war in some kind of Malthusian struggle. It's Darwin time now:
Feeding through fusion also opens the door to a pageant of evolutionary phenomena. Strategies to preferentially sequester resources (e.g., enzymes or membrane catalysts) during division or rapidly produce or acquire anionic mass could evolve. In addition, the conveyor vesicles need not be devoid of a genome. Fusion of vesicles containing different genomes would create intracellular competition between unrelated genomes, and could lead to genetic novelty through recombination. Parasitic genomes could lurk within conveyor vesicles, awaiting fusion to a target vesicle susceptible to takeover (Figure 1C).
Nothing in this story is realistic when you demand "plausible prebiotic conditions" and exclude investigator interference. Fat bubbles don't mind who wins the alleged "competition." A "genome" is not a random assortment of mixed-handed nucleotides inside a fat bubble. It's dead, too. It won't care about preserving "novelty" for future generations. It isn't lurking to take over a target vesicle.
It doesn't matter that the scenario is highly unrealistic; storytelling is fun! Everybody wins, and all must get a prize:
Although these protocells are rather advanced compared to the prebiotic milieu, further study of this evolvable system promises to be a rewarding endeavor.
If you find it troubling that scientific journals can publish stuff like this and be rewarded for it -- with no complaints from sensible realists or opportunities for rebuttal -- you're not alone.
Evolution News & Views January 6, 2016 3:31 AM
The origin-of-life field is often guilty of ascribing personality to molecules. You see this in the popular literature, but even the serious scientists slip into the habit. It takes the form of an invisible hand, directing the assembly of multiple parts like a foreman at a construction site. Need a membrane? Here are some fatty acids that can make a simple one for starters. Need a replicator? This RNA isn't great, but he can learn. Need proteins? We found some in this meteorite that are willing to lend a left hand.
A more realistic image would be an arena of dead runners surrounded by hurdles as high as mountains. They don't "want" to leap over the hurdles and win a race to become alive, because they can't. They're dead. So are molecules often dubbed "The building blocks of life." They have no interest in jumping over hurdles on a path to a protocell. Much as the origin-of-life researcher wants them to win the Protocell Prize, they couldn't care less. They'll just do whatever the unguided forces of nature make them do.
The only way dead runners can get over a hurdle without intelligent help is to wait for an earthquake, a tsunami, or a meteorite to launch them. With a lot of luck, one runner might land on the other side of the first hurdle. But then he won't have any interest in continuing on over the second hurdle. He is incapable of wanting.
This is the only realistic way for an origin-of-life researcher to approach the problem: molecules are dead things. They don't want to become alive. No amount of coaxing, sweet-talking, or intelligent interference will make them want to live. They will behave like the lifeless things they are, blindly following the laws of chemistry and physics, just as dead runners will obey the law of gravity and lie on the ground unless launched by a force strong enough to overcome gravity. Even if they make it over the top, they will fall back on the ground without any interest in making it over the next hurdle. This pessimistic outlook is true even after Darwinian natural selection enters the picture. Natural selection is just as dead as the molecules. It must not be personified; it has no goal, wish, or plan.
Origin-of-life researchers think they have done their job if they find a possible earthquake or tsunami that might get one body over a hurdle. This "sheds light" on the problem, they say. Different labs find additional earthquakes and tsunamis to help with the other hurdles. Accident #1 "might" work, accident #2 "might" get a body over the next hurdle, and so on. The series of lucky accidents "sheds light" on how life got here, the materialists assure us. They feel justified making up various scenarios because they think, "We're here, aren't we? It must have happened somehow." Having abandoned intelligence as a cause, they're stuck.
With this in mind, let's examine a paper in Current Biology by Saha and Chen, "Origin of Life: Protocells Red in Tooth and Claw." First, they recognize a couple of hurdles:
What is life, and how can we make it? NASA's Exobiology Program uses the working definition of life as "a self-sustaining chemical system capable of Darwinian evolution". Several research labs have undertaken the task of synthesizing an organism that meets this definition. It seems clear that some propagating genetic information is necessary, whether it is a self-replicating RNA or a system of enzymes and DNA. In addition, there are convincing arguments for encapsulating the genetic system inside self-replicating vesicles, creating a primitive entity called a 'protocell'. [Emphasis added.]
There are many more hurdles in the track beyond the two they mention, (1) genetic information and (2) a container. But did you catch the intelligent interference? They speak of labs run by intelligent agents who "have undertaken the task of synthesizing an organism." They ask, "How can we make it?" It's not their job, but even if they were to succeed, it would prove intelligent design, not the origin of life by natural processes.
Origin of life research is sometimes abbreviated OOL. According to their definition, NOODLE would be more apt: Naturalistic Origin of Darwinian Life Evolving. Their job is going to be harder than pushing a NOODLE through a needle. They have to keep their intelligent hands off, and the noodle doesn't want to go there. "But," they might reply, "what if there are billions of noodles and billions of needles? One or more might wash through the eye of a needle by chance and natural forces." OK, but there are more needles on the pathway to life, and the noodles are still dead, uncaring, and uncared for.
Saha and Chen make a big deal of protocell models based on phospholipid membranes (fat bubbles). These could encapsulate floating molecules of DNA or RNA and then merge with other fat bubbles, creating a game of competition. Follow the personification in their figure caption:
(A) A scheme for evolution of protocells from coacervates. (B) In the competition among protocells, the 'rich get richer' as the larger vesicle grows more quickly and fuses with the feeder vesicles. (C) In a virus-like strategy, a parasitic genome (red) lurks within a small vesicle and awaits fusion. Once inside an actively metabolizing protocell, the parasitic genome replicates rapidly and overtakes the host's genome (black).
It's hard to take this seriously. The molecules don't want to get rich. They aren't competing. They aren't lurking, awaiting, and overtaking. If the richest fat bubble outlasts the others, the only ones celebrating are the researchers.
It's not necessary to wade through the weeds of their paper, hearing about "zwitterionic or anionic membranes" and other jargon, because their approach is fallacious throughout. They are hoisting the dead bodies over the hurdles against their natural inclinations. Example:
Therefore, the membrane composition became increasingly dominated by the (non-phospholipid) cationic lipid, which could not form stable vesicles on its own. In addition, there was no way to add more nucleotides and enzyme. Ultimately, a mechanism to supply phospholipids and nucleotides to the protocells was required.
The solution to this problem has recently been reported by the same group, through delivery of nucleotides, enzyme and phospholipids by fusion of 'feeder' vesicles to the protocells....
They picture the fat bubbles cannibalizing one another. No kidding: "These protocell cannibals thus gain direct access to their victim's contents.... Vesicle cannibalism raises the stakes of the competition between protocells -- inactive protocells do not merely fail to grow, they are actually eaten by others."
These fat bubbles are sheer barbarians! They're waging war in some kind of Malthusian struggle. It's Darwin time now:
Feeding through fusion also opens the door to a pageant of evolutionary phenomena. Strategies to preferentially sequester resources (e.g., enzymes or membrane catalysts) during division or rapidly produce or acquire anionic mass could evolve. In addition, the conveyor vesicles need not be devoid of a genome. Fusion of vesicles containing different genomes would create intracellular competition between unrelated genomes, and could lead to genetic novelty through recombination. Parasitic genomes could lurk within conveyor vesicles, awaiting fusion to a target vesicle susceptible to takeover (Figure 1C).
Nothing in this story is realistic when you demand "plausible prebiotic conditions" and exclude investigator interference. Fat bubbles don't mind who wins the alleged "competition." A "genome" is not a random assortment of mixed-handed nucleotides inside a fat bubble. It's dead, too. It won't care about preserving "novelty" for future generations. It isn't lurking to take over a target vesicle.
It doesn't matter that the scenario is highly unrealistic; storytelling is fun! Everybody wins, and all must get a prize:
Although these protocells are rather advanced compared to the prebiotic milieu, further study of this evolvable system promises to be a rewarding endeavor.
If you find it troubling that scientific journals can publish stuff like this and be rewarded for it -- with no complaints from sensible realists or opportunities for rebuttal -- you're not alone.
No comments:
Post a Comment