In Science Education, "Confusion" Can Be a Synonym for Stimulation
Sarah Chaffee January 7, 2016 2:25 PM
Writing at NPR's Cosmos and Culture blog, psychology professor Tania Lombrozo highlights the role that confusion can play in learning -- especially in science ("Sometimes Confusion Is a Good Thing"). This may seem paradoxical. Isn't dispelling confusion an aim of education?
In fact, Lombrozo argues, it may be helpful in some contexts. She refers to a study by Sidney D'Mello, Blair Lehman, Reinhard Pekrun, and Art Graesser in the journal Learning and Instruction. The researchers induced confusion by exposing learners to contradictory opinions and then asking them to decide which opinion had the most scientific merit. Student confusion was correlated with enhanced learning. Although correct answers were later provided to the students in the study, this may not be possible in areas of ongoing scientific debate.
The authors note:
The most obvious implication of this research is that there might be some practical benefits for designing educational interventions that intentionally perplex learners. Learners complacently experience a state of low arousal when they are in comfortable learning environments involving passive reading and accumulating shallow facts without challenges...
As I have observed here before, allowing students to grapple with scientific questions engages them in the act of inquiry. Note that there is a difference between uncertainty that is irrelevant to the question at hand (due to a teacher's lack of clarity, for example, or the inability to find the right page in the textbook) and experiencing the dynamic tension between alternate viewpoints.
Lombrozo reflects:
One possibility is that confusion is not itself beneficial, but rather a marker that an important cognitive process has taken place: The learner has appreciated some inconsistency or deficit in her prior beliefs. But another possibility is that confusion is itself a step toward learning -- an experience that motivates the learner to reconcile an inconsistency or remedy some deficit. In this view, confusion isn't just a side effect of beneficial cognitive processes, but a beneficial process itself. Supporting this stronger view, there's evidence that experiencing difficulties in learning can sometimes be desirable, leading to deeper processing and better long-term memory.
In science, it is uncertainty, and the urge to explore the unknown, that leads to discovery. Research aims to extend the current body of knowledge, not merely to regurgitate what has already been found. In the Journal of Cell Science, Martin Schwartz writes about working on his PhD:
I remember the day when Henry Taube (who won the Nobel Prize two years later) told me he didn't know how to solve the problem I was having in his area. I was a third-year graduate student and I figured that Taube knew about 1000 times more than I did (conservative estimate). If he didn't have the answer, nobody did.
That's when it hit me: nobody did. That's why it was a research problem. And being my research problem, it was up to me to solve. Once I faced that fact, I solved the problem in a couple of days. (It wasn't really very hard; I just had to try a few things.) The crucial lesson was that the scope of things I didn't know wasn't merely vast; it was, for all practical purposes, infinite. That realization, instead of being discouraging, was liberating. If our ignorance is infinite, the only possible course of action is to muddle through as best we can.
Unanswered questions are central to ongoing scientific inquiry. They spur further investigation. Exposing students to the interplay between questions and answers prepares them to engage in research.
In the study of life's origins, for example, many fundamental questions are unresolved. Priestley Medalist George M. Whitesides wrote, "Most chemists believe, as do I, that life emerged spontaneously from mixtures of molecules in the prebiotic Earth. How? I have no idea." Similarly, leading molecular biologist Eugene Koonin noted:
Despite many interesting results to its credit, when judged by the straightforward criterion of reaching (or even approaching) the ultimate goal, the origin-of-life field is a failure -- we still do not have even a plausible coherent model, let alone a validated scenario, for the emergence of life on Earth.... A succession of exceedingly unlikely steps is essential for the origin of life, from the synthesis and accumulation of nucleotides to the origin of translation; through the multiplication of probabilities, these make the final outcome seem almost like a miracle.
Koonin acknowledges that some progress has been made, but falls back on the controversial multiverse theory to explain how life sprang into existence against all odds. The enigma of biological origins offers an ideal opportunity for students to learn about a field of persistent scientific uncertainty. Isn't this better than insisting that students accept evolution as "fact," then work backward to explain all that they see in that dogmatic light?
Another mystery is the Cambrian explosion. As many of our readers will know, nearly two-thirds of known animal body plans appeared in a roughly 5 to 10 million-year period -- a brief span in geological terms. Some scientists question the ability of natural selection and random mutation to produce so many diverse animals in such a short period. In their book The Cambrian Explosion, Douglas Erwin and James Valentine wrote:
One important concern has been whether the microevolutionary patterns commonly studied in modern organisms by evolutionary biologists are sufficient to understand and explain the events of the Cambrian or whether evolutionary theory needs to be expanded to include a more diverse set of macroevolutionary processes. We strongly hold to the latter position.
Similarly, in reviewing Erwin and Valentine's book, the journal Science noted:
The Ediacaran and Cambrian periods witnessed a phase of morphological innovation in animal evolution unrivaled in metazoan history, yet the proximate causes of this body plan revolution remain decidedly murky. The grand puzzle of the Cambrian explosion surely must rank as one of the most important outstanding mysteries in evolutionary biology.
Yet textbooks generally avoid acknowledging this mystery. In Icons of Evolution, Jonathan Wells writes:
Since booklets published by the National Academy of Sciences ignore the fossil and molecular evidence and call evolution a "fact," perhaps it is not surprising to find biology textbooks doing the same. "Descent with modification from common ancestors is a scientific fact, that is, a hypothesis so well supported by evidence that we take it to be true," according to Douglas Futuyma's 1998 college textbook Evolutionary Biology....Although Futuyma's book subsequently discusses the Cambrian explosion, its emphasis is on explaining it away rather than dealing candidly with its challenge to Darwinian theory.
It does not matter what you call it; uncertainty, grappling with puzzling questions, acknowledging areas of scientific ignorance -- it is pedagogically sound and a real and integral part of science. This is one reason that Discovery Institute recommends teaching both the scientific strengths and weaknesses of evolutionary theory. Our science education policy states:
[Discovery Institute] believes that evolution should be fully and completely presented to students, and they should learn more about evolutionary theory, including its unresolved issues. In other words, evolution should be taught as a scientific theory that is open to critical scrutiny, not as a sacred dogma that can't be questioned.
John Scopes himself put it well: "If you limit a teacher to only one side of anything, the whole country will eventually have only one thought... I believe in teaching every aspect of every problem or theory." Our position is simply that, in science education, admitting areas of honest uncertainty should extend to evolution as much as to any other subject. By withholding such stimulation, educators do students no favor.
Sarah Chaffee January 7, 2016 2:25 PM
Writing at NPR's Cosmos and Culture blog, psychology professor Tania Lombrozo highlights the role that confusion can play in learning -- especially in science ("Sometimes Confusion Is a Good Thing"). This may seem paradoxical. Isn't dispelling confusion an aim of education?
In fact, Lombrozo argues, it may be helpful in some contexts. She refers to a study by Sidney D'Mello, Blair Lehman, Reinhard Pekrun, and Art Graesser in the journal Learning and Instruction. The researchers induced confusion by exposing learners to contradictory opinions and then asking them to decide which opinion had the most scientific merit. Student confusion was correlated with enhanced learning. Although correct answers were later provided to the students in the study, this may not be possible in areas of ongoing scientific debate.
The authors note:
The most obvious implication of this research is that there might be some practical benefits for designing educational interventions that intentionally perplex learners. Learners complacently experience a state of low arousal when they are in comfortable learning environments involving passive reading and accumulating shallow facts without challenges...
As I have observed here before, allowing students to grapple with scientific questions engages them in the act of inquiry. Note that there is a difference between uncertainty that is irrelevant to the question at hand (due to a teacher's lack of clarity, for example, or the inability to find the right page in the textbook) and experiencing the dynamic tension between alternate viewpoints.
Lombrozo reflects:
One possibility is that confusion is not itself beneficial, but rather a marker that an important cognitive process has taken place: The learner has appreciated some inconsistency or deficit in her prior beliefs. But another possibility is that confusion is itself a step toward learning -- an experience that motivates the learner to reconcile an inconsistency or remedy some deficit. In this view, confusion isn't just a side effect of beneficial cognitive processes, but a beneficial process itself. Supporting this stronger view, there's evidence that experiencing difficulties in learning can sometimes be desirable, leading to deeper processing and better long-term memory.
In science, it is uncertainty, and the urge to explore the unknown, that leads to discovery. Research aims to extend the current body of knowledge, not merely to regurgitate what has already been found. In the Journal of Cell Science, Martin Schwartz writes about working on his PhD:
I remember the day when Henry Taube (who won the Nobel Prize two years later) told me he didn't know how to solve the problem I was having in his area. I was a third-year graduate student and I figured that Taube knew about 1000 times more than I did (conservative estimate). If he didn't have the answer, nobody did.
That's when it hit me: nobody did. That's why it was a research problem. And being my research problem, it was up to me to solve. Once I faced that fact, I solved the problem in a couple of days. (It wasn't really very hard; I just had to try a few things.) The crucial lesson was that the scope of things I didn't know wasn't merely vast; it was, for all practical purposes, infinite. That realization, instead of being discouraging, was liberating. If our ignorance is infinite, the only possible course of action is to muddle through as best we can.
Unanswered questions are central to ongoing scientific inquiry. They spur further investigation. Exposing students to the interplay between questions and answers prepares them to engage in research.
In the study of life's origins, for example, many fundamental questions are unresolved. Priestley Medalist George M. Whitesides wrote, "Most chemists believe, as do I, that life emerged spontaneously from mixtures of molecules in the prebiotic Earth. How? I have no idea." Similarly, leading molecular biologist Eugene Koonin noted:
Despite many interesting results to its credit, when judged by the straightforward criterion of reaching (or even approaching) the ultimate goal, the origin-of-life field is a failure -- we still do not have even a plausible coherent model, let alone a validated scenario, for the emergence of life on Earth.... A succession of exceedingly unlikely steps is essential for the origin of life, from the synthesis and accumulation of nucleotides to the origin of translation; through the multiplication of probabilities, these make the final outcome seem almost like a miracle.
Koonin acknowledges that some progress has been made, but falls back on the controversial multiverse theory to explain how life sprang into existence against all odds. The enigma of biological origins offers an ideal opportunity for students to learn about a field of persistent scientific uncertainty. Isn't this better than insisting that students accept evolution as "fact," then work backward to explain all that they see in that dogmatic light?
Another mystery is the Cambrian explosion. As many of our readers will know, nearly two-thirds of known animal body plans appeared in a roughly 5 to 10 million-year period -- a brief span in geological terms. Some scientists question the ability of natural selection and random mutation to produce so many diverse animals in such a short period. In their book The Cambrian Explosion, Douglas Erwin and James Valentine wrote:
One important concern has been whether the microevolutionary patterns commonly studied in modern organisms by evolutionary biologists are sufficient to understand and explain the events of the Cambrian or whether evolutionary theory needs to be expanded to include a more diverse set of macroevolutionary processes. We strongly hold to the latter position.
Similarly, in reviewing Erwin and Valentine's book, the journal Science noted:
The Ediacaran and Cambrian periods witnessed a phase of morphological innovation in animal evolution unrivaled in metazoan history, yet the proximate causes of this body plan revolution remain decidedly murky. The grand puzzle of the Cambrian explosion surely must rank as one of the most important outstanding mysteries in evolutionary biology.
Yet textbooks generally avoid acknowledging this mystery. In Icons of Evolution, Jonathan Wells writes:
Since booklets published by the National Academy of Sciences ignore the fossil and molecular evidence and call evolution a "fact," perhaps it is not surprising to find biology textbooks doing the same. "Descent with modification from common ancestors is a scientific fact, that is, a hypothesis so well supported by evidence that we take it to be true," according to Douglas Futuyma's 1998 college textbook Evolutionary Biology....Although Futuyma's book subsequently discusses the Cambrian explosion, its emphasis is on explaining it away rather than dealing candidly with its challenge to Darwinian theory.
It does not matter what you call it; uncertainty, grappling with puzzling questions, acknowledging areas of scientific ignorance -- it is pedagogically sound and a real and integral part of science. This is one reason that Discovery Institute recommends teaching both the scientific strengths and weaknesses of evolutionary theory. Our science education policy states:
[Discovery Institute] believes that evolution should be fully and completely presented to students, and they should learn more about evolutionary theory, including its unresolved issues. In other words, evolution should be taught as a scientific theory that is open to critical scrutiny, not as a sacred dogma that can't be questioned.
John Scopes himself put it well: "If you limit a teacher to only one side of anything, the whole country will eventually have only one thought... I believe in teaching every aspect of every problem or theory." Our position is simply that, in science education, admitting areas of honest uncertainty should extend to evolution as much as to any other subject. By withholding such stimulation, educators do students no favor.
No comments:
Post a Comment
Note: only a member of this blog may post a comment.