performed the injury."
Marcus Aurelius, Meditations
the bible,truth,God's kingdom,Jehovah God,New World,Jehovah's Witnesses,God's church,Christianity,apologetics,spirituality.
All life forms fall within a nested hierarchy. Of the hundreds of thousands of specimens that have been tested, every single one falls within a nested hierarchy, or their evolutionary phylogenetic tree is still unknown and not sequenced yet.This claim (which he wasn't making, by the way) is far from true. We constantly find organisms that don't fit neatly into a phylogenetic tree. Or, what happens is evolutionary biologists attempt to force-fit organisms into the tree only by invoking processes like convergent evolution and loss of traits. In other words, evolutionary biologists are forced to propose that an organism's traits did not arise through common ancestry, because common ancestry fails to explain the data. Does this mean that evolutionary biologists reject common ancestry when they find data that doesn't fit a tree? No, because they assume common ancestry; they aren't interested in testing it. So when they find data that doesn't fit a tree, they just find ways to force-fit the data into the tree. Here's what's going on:
Whether one uses cladistic parsimony, distance measures, or maximum likelihood methods, the typical question is which tree is the best one, not whether there is a tree in the first place. (Elliott Sober and Michael Steele, "Testing the Hypothesis of Common Ancestry," Journal of Theoretical Biology 218 (2002): 395-408 (emphasis added).)Likewise, the assumption is made explicit, and primary, in the UC Berkeley Museum of Paleontology's introductory page on cladistics:
What assumptions do cladists make? There are three basic assumptions in cladistics:One textbook cited by Stephen Meyer in Darwin's Doubt concurs about this assumption:
1.Any group of organisms are related by descent from a common ancestor.
The key assumption made when constructing a phylogenetic tree from a set of sequences is that they are all derived from a single ancestral sequence, i.e., they are homologous. (Marketa Zvelebil and Jeremy O. Baum, Understanding Bioinformatics (New York: Garland Science, 2008), p. 239.)Together, these authorities make a crucial point: cladistics and other phylogenetics methods do not demonstrate common ancestry; they assume it. In other words, these methods don't test whether all organisms fit into a nested hierarchy (i.e., phylogenetic tree). Rather, evolutionary systematics assumes that common ancestry is true and therefore all organisms belong within a nested hierarchy, and then it uses methods to force-fit any organism into the tree, even if that organisms has traits that don't fit neatly within the tree. Thus, Michael Syvanen -- a rare evolutionary biologist who is open to the possibility that universal common ancestry is false -- laments the pro-tree biases of treebuilding algorithms:
Because tree analysis tools are used so widely, they tend to introduce a bias into the interpretation of results. Hence, one needs to be continually reminded that submitting multiple sequences (DNA, protein, or other character states) to phylogenetic analysis produces trees because that is the nature of the algorithms used. (Michael Syvanen, "Evolutionary Implications of Horizontal Gene Transfer," Annual Review of Genetics, 46:339-356 (2012) (emphases added).)Common ancestry, therefore, is a starting assumption about the data -- not a conclusion from it. Another key lesson is this: just because you see evolutionary biologists creating an impressive-looking phylogenetic tree doesn't mean that all of the organisms or their traits shown within that tree fit neatly into a nested hierarchy (i.e., a tree structure). One could cite many examples of organisms that don't fit cleanly into a tree. Here are a few: Sahelanthropus tchadensis is widely touted as a human ancestor that lived about 6-7 million years ago, sometime very soon after the supposed split between the human line and the chimp line. But it's rarely mentioned that this specimen doesn't fit into the standard hominin tree at all. Why? Because it has a flat face, a humanlike quality, which shouldn't exist that far back:
If we accept these as sufficient evidence to classify S. tchadensis as a hominid at the base, or stem, of the modern human clade, then it plays havoc with the tidy model of human origins. Quite simply, a hominid of this age should only just be beginning to show signs of being a hominid. It certainly should not have the face of a hominid less than one-third of its geological age. Also, if it is accepted as a stem hominid, under the tidy model the principle of parsimony dictates that all creatures with more primitive faces (and that is a very long list) would, perforce, have to be excluded from the ancestry of modern humans." (Bernard Wood, "Hominid revelations from Chad," Nature, 418 (July 11, 2002):133-35.)Because of this, some are skeptical that S. tchadensis belongs on the human line. If that's the case then its flat face represents convergent evolution. And if it is on the human line, then you are forced to propose that later species on the human line lost this trait. Either way, S. tchadensis creates major problems for a nice, neat, nested hierarchy of hominins that is consistent with the chronology of the fossil record. Much further back, there are organisms like Diania, thought to be an early arthropod ancestor from the Cambrian period, but which actually cause huge problems for the arthropod tree:
[W]e should caution that dinocaridids, Diania and other potential stem-arthropods typically express mosaics of arthropod-like characters, which makes resolving a single, simple tree of arthropod origins problematic. Indeed, the position recovered here for Diania between Radiodonta and the ostensibly similar-looking Schinderhannes is surprising. Diania, Schinderhannes and the remaining Arthropoda all share the putative apomorphy of jointed trunk appendages, and yet the trunk limbs of Diania resemble the frontal appendages of Anomalocaris and other radiodontans, which themselves lack trunk limbs entirely. If this is a secondary reduction in fossils like Anomalocaris, then Diania may in fact occupy a more basal position with respect to Radiodonta, Schinderhannes and Arthropoda; a scenario that would be more consistent with their fairly simple body morphology. (Liu et al., "An armoured Cambrian lobopodian from China with arthropod-like appendages," Nature, 470 (February 24, 2011): 526-530 (internal citations omitted).)The reason the authors talk about "mosaics of arthropod-like characters" is that these organisms don't fit into an orderly, sequential, hierarchical, treelike pattern as predicted by common descent. They present a mishmash of traits, not distributed in a treelike pattern that shows some sequential, hierarchy ordering arthropod traits. This is a famous problem in arthropod evolution, rightly described as a mess. As one paper observes: "Arthropod phylogeny is sometimes presented as an almost hopeless puzzle wherein all possible competing hypotheses have support." That's the opposite of a nested hierarchy. Nor is it just within the Cambrian phyla that we find such an array of phylogenetic misfits. Among the animal phyla more generally, we see traits that make it difficult to create a treelike representation of relationships.
The ability to move one's body rapidly through water is a key to existence for many species on this blue planet of ours. The Persian carpet flatworm, the cuttlefish and the black ghost knifefish look nothing like each other -- their last common ancestor lived 550 million years ago, before the Cambrian period -- but a new study uses a combination of computer simulations, a robotic fish and video footage of real fish to show that all three aquatic creatures have evolved to swim with elongated fins using the same mechanical motion that optimizes their speed, helping to ensure their survival. These three animals are part of a very diverse group of aquatic animals -- both vertebrate and invertebrate -- that independently arrived at the same solution of how to use their fins to maximize speed. And, remarkably, this so-called "convergent" evolution happened at least eight times across three different phyla, or animal groups, supporting the belief that necessity played a larger role than chance in developing this trait.Now they are welcome to invoke convergent evolution if they like, but it's striking how each of these widely diverse organisms has a very similar mode of swimming, where the length of one undulation of the animal's fins divided by the average amplitude of the corresponding sideways movement gives you a ratio of about 20. You can see how distantly related (according to the usual evolutionary paradigm) these similar-swimming organisms are by looking at a tree diagram from the original paper. Also in April there were striking reports of a new vegetarian theropod dinosaur that had traits that made it very difficult to classify within the standard dinosaur tree:
Although closely related to the notorious carnivore Tyrannosaurus rex, a new lineage of dinosaur discovered in Chile is proving to be an evolutionary jigsaw puzzle, as it preferred to graze upon plants. Chilesaurus boasted a proportionally small skull, hands with two fingers like Tyrannosaurus rex and feet more akin to primitive long-neck dinosaurs.Theropods, of course, include the meat eaters Velociraptor and T. rex, yet this species was a vegetarian. It thus poses a severe puzzle for evolutionary classification, as an article in The Guardian acknowledged:
Fossil hunters in Chile have unearthed the remains of a bizarre Jurassic dinosaur that combined a curious mixture of features from different prehistoric animals. The evolutionary muddle of a beast grew to the size of a small horse and was the most abundant animal to be found 145 million years ago, in what is now the Aysén region of Patagonia. The discovery ranks as one of the most remarkable dinosaur finds of the past 20 years, and promises to cause plenty of headaches for paleontologists hoping to place the animal in the dinosaur family tree. "I don't know how the evolution of dinosaurs produced this kind of animal, what kind of ecological pressures must have been at work," said Fernando Novas at the Bernardino Rivadavia Natural Sciences Museum in Buenos Aires.The technical paper in Nature puts it this way:
For a basal tetanuran, Chilesaurus possesses a number of surprisingly plesiomorphic traits on the hindlimbs, especially in the ankle and foot, which resemble basal sauropodomorphs. These features are here considered as secondary reversals that might be related to a less-cursorial mode of locomotion. Furthermore, derived features of the dentary and teeth shared by Chilesaurus, sauropodomorphs and therizinosaurs are interpreted as homoplasies related to herbivorous habits. ... Chilesaurus represents an extreme case of mosaic evolution among dinosaurs, owing to the presence of dental, cranial and postcranial features that are homoplastic with multiple disparate groups. Using quantitative morphospace analysis, we explored morphospace occupation of different skeletal regions in Chilesaurus with respect to a variety of avian and non-avian theropods. This shows that Chilesaurus has a ceratosaur-like axial skeleton, a 'basal tetanuran' forelimb and scapular girdle, a coelurosaur-like pelvis, and a tetanuran-like hindlimb. General ankle and foot construction does not group with any theropod clade, probably as a result of the characters shared by Chilesaurus, sauropodomorphs and herrerasaurids.Science Daily explained in less technical terms why this species, with its set of traits resembling many different types of dinosaurs, is difficult to classify:
Other features present in very different groups of dinosaurs Chilesaurus adopted were robust forelimbs similar to Jurassic theropods such as Allosaurus, although its hands were provided with two blunt fingers, unlike the sharp claws of fellow theropod Velociraptor. Chilesaurus' pelvic girdle resembles that of the ornithischian dinosaurs, whereas it is actually classified in the other basic dinosaur division -- Saurischia. The different parts of the body of Chilesaurus were adapted to a particular diet and way of life, which was similar to other groups of dinosaurs. As a result of these similar habits, different regions of the body of Chilesaurus evolved resembling those present in other, unrelated groups of dinosaurs, which is a phenomenon called evolutionary convergence.What we see here is a dino that doesn't fit with the dino tree not just because it's a herbivorous theropod, but also because different parts of its body appear similar to different types of dinosaurs. Through convergent evolution and loss of traits, you can always find a way accommodate such quirky data. However the bottom line is that organisms like these are the opposite of finding "All life forms fall within nested hierarchy." We explain further in our curriculum Discovering Intelligent Design:
Chilesaurus represents one of the most extreme cases of mosaic convergent evolution recorded in the history of life. For example, the teeth of Chilesaurus are very similar to those of primitive long-neck dinosaurs because they were selected over millions of years as a result of a similar diet between these two lineages of dinosaurs.
Martín Ezcurra, Researcher, School of Geography, Earth and Environmental Sciences, University of Birmingham said: 'Chilesaurus can be considered a 'platypus' dinosaur because different parts of its body resemble those of other dinosaur groups due to mosaic convergent evolution. In this process, a region or regions of an organism resemble others of unrelated species because of a similar mode of life and evolutionary pressures. Chilesaurus provides a good example of how evolution works in deep time and it is one of the most interesting cases of convergent evolution documented in the history of life.
You may recall the "main assumption," mentioned at the beginning of the chapter, that Darwinian evolutionists use when constructing trees: similarity implies inheritance from a common ancestor. But what about situations where that assumption is clearly untrue -- i.e., when two organisms share a trait that their supposed common ancestor could not have possessed? A striking example is the [skull] similarity between marsupial and placental "saber-toothed cats," which are classified as very different types of mammals due to their two distinctly different ways of bearing young.Does this sort of data absolutely refute universal common descent? Taken on a case-by-case basis, no of course not, and we're not claiming it does. What it shows, collectively, is that the evolutionary case is a lot weaker than is routinely claimed. We commonly -- if not constantly -- find organisms whose traits don't fit into a hierarchical tree.
According to current evolutionary theory, the common ancestor of these two cats was a small rodent-like mammal with a very different body plan. Thus, their highly similar skull structures had to develop independently and could not have been inherited from a common ancestor.
Common descent does not explain these similarities. Evolutionists try to explain this evidence by claiming these distinctly different cats evolved the same traits independently through convergent evolution.
Perhaps the main assumption of phylogenetic trees should be rewritten as: "similarity implies inheritance from a common ancestor, except when it does not." Rather than being a helpful solution for neo-Darwinists, convergent evolution undermines the reasoning used to construct phylogenetic trees.In fact, maintaining that "All life forms fall within a nested hierarchy" requires you to ignore huge amounts of data. ID proponents who doubt common descent have, I would say, ample reason for doing so.
[A]s science continues to reveal how life works, we find again and again that the magic that seems to distinguish between things that are alive and things that are not [is] actually created by complex interacting molecular machines. These microscopic machines are as precise and intricate as a mechanical watch, but instead of being run on gears and springs, are powered by the fundamental rules of physics and chemistry. Our understanding of the precise coiling and uncoiling of the DNA molecule, or the way that one molecule can literally walk almost robotically along the tightrope of another molecule, continue to show us again and again, this molecular clockwork is real and pervasive.Now Larson is a systems biologist, which means he is trained to see life from an engineering point of view. In such a perspective, scientists treat biological systems as if they are infused with teleology -- built from the top down to achieve some goal, not blindly from the bottom up as Darwinian evolution sees them. This doesn't mean that systems biologists have doubts about Darwinian evolution (doubts that they'll admit) or that they support intelligent design. They hold their extremely fruitful systems biology viewpoint in tension with the origins-models they otherwise endorse. Here's how physicist David Snoke describes the field with its sense of cognitive dissonance:Now what's most unsettling to me about this is that we didn't build these machines. As someone originally trained as an engineer, I've got to be honest with you, I kind of hate this. As the most clever species on the planet, we kind of like to think of ourselves as the builders of the most sophisticated technology in the entire universe. We invented written language and the printing press. We cured polio and sent a man to the moon. Heck, we even took savage beasts and turned them into kittens, and then built a global communications network to share pictures of them. That's pretty impressive.And yet when I look through a microscope at a humble bacterium -- by the way its ancestors were on the planet a billion years ago, billions of years ago -- I still wonder how it really works. Because the mechanical watch that is life is not like any watch we've ever built. It is biological gears and springs, but they fill rooms and buildings and cities of a vast microscope landscape that's bustling with activity.On the one hand it's extremely well organized, but on the other hand the sheer scale of all of this unfamiliar well-organized stuff that happens in there makes me feel that I've stumbled onto an alternate landscape of technology that's built by an engineer a million times smarter than me. The more that I search for principles beyond the ones we've already learned, the more I am overwhelmed with the feeling that this stuff was built by aliens.OK, not literally. I don't literally mean that I think little green men and women came down to the earth and seeded life here a billion years ago. What we understand of course is that life evolved on the planet over billions of years. But the results of evolution confuse even our smartest engineers when we try to understand how we could build what biology has evolved.What if life has good engineering principles and we just haven't figured them out yet? Could studying biology give us the ability to extract new engineering principles that maybe then we could use to solve the world's intractable problems? Our experiments only give us glimpses into what happens in these tiny spaces, but what happens there has huge implication for the future, in the 21st century, and beyond.
Opponents of the intelligent design (ID) approach to biology have sometimes argued that the ID perspective discourages scientific investigation. To the contrary, it can be argued that the most productive new paradigm in systems biology is actually much more compatible with a belief in the intelligent design of life than with a belief in neo-Darwinian evolution. This new paradigm in system biology, which has arisen in the past ten years or so, analyzes living systems in terms of systems engineering concepts such as design, information processing, optimization, and other explicitly teleological concepts. This new paradigm offers a successful, quantitative, predictive theory for biology. Although the main practitioners of the field attribute the presence of such things to the outworking of natural selection, they cannot avoid using design language and design concepts in their research, and a straightforward look at the field indicates it is really a design approach altogether.Larson talks further about the machine-like nature of many biological systems, how we can use computers and an engineering-based view of biology to better treat diseases, and even how we can understand complex biological mysteries like love. He says we can only understand biological feelings like love as "a series of complex but specific and knowable events that happen inside your body." Complex and specified -- sound familiar?(David Snoke, "Systems Biology as a Research Program for Intelligent Design," BIO-Complexity, Vol. 2014 (3).)
Because metabiology programs have unbounded length and can run for an unbounded amount of time, the unboundedness essentially undermines the creativity required to solve the large-number problem. With unbounded resources and unbounded time, one can do most anything.In the real world, probabilistic resources are limited. Time is finite, and populations have finite sizes, and this imposes limits on what traits can evolve especially (as Stephen Meyer shows in Darwin's Doubt) when traits require multiple mutations before providing some advantage. Metabiology uses a population of one single "digital organism," which then "evolves" over time, but it grants itself essentially infinite computing resources to do this. With such a generous endowment, sure, anything can eventually evolve. But we don't live in an unlimited world, which is precisely why Darwinian evolution faces major theoretical problems. They thus write:
Although elegant in conception, metabiology departs from reality because it pays no attention to resource limitations. Metabiology's math obscures the huge amounts of time required for the evolutionary process. The programs can run for any arbitrarily large number of steps. Additionally, programs can be of any length with no penalty imposed for longer programs.Ewert, Dembski, and Marks explain that Chaitin's program uses a halting oracle as a source of "active information." A halting oracle is a hypothetical meta-program that can tell you if a given program will ever stop running. As they explain, such an oracle could be useful in disproving certain mathematical conjectures, such as Goldbach's conjecture, "which hypothesizes that all even numbers greater than two can be written as the sum of two primes." They discuss how a halting oracle could determine if the conjecture was false:
Suppose a program X can be written to test each even number sequentially to see if it were the sum of two primes. If a counterexample is found, the program stops and declares "I have a counterexample!" Otherwise, the next even number is tested. If Goldbach's conjecture is true, the program will run forever.The difficulty for Chaitin is he admits that for metabiology, "[The halting oracle] is where all the creativity is really coming from in our program," but also admits that such an oracle is "mathematical fantasy." Ewert, Dembski, and Marks thus aptly observe, "A computer tool proven not to exist is admittedly at the outset an obvious major strike against a theory purporting to demonstrate reality."If a halting oracle existed, we could feed it X. If the halting oracle says "this program halts," Goldbach's conjecture is disproved. A counterexample exists. If the halting oracle says, "This program never halts," then Goldbach's conjecture is proven! There exists no counterexample.
As any computer programmer will tell you, landscapes of computer program fitness are the opposite of smooth. We would therefore not expect Darwinian evolution to fare well. Chaitin notes this when he writes [3], "The fitness landscape has to be very special for Darwinian evolution to work."Chaitin also presents a different model that uses what he calls "intelligent design" to find a search target. This obviously doesn't help show what unguided evolutionary processes can accomplish. The author of the blog "Theory, Evolution and Games Group" critiques Chaitin's model, writing that metabiology uses "a teleological model -- a biologist's nightmare." Ewert, Dembski, and Marks explain:The environment for evolution to occur, therefore, has to be carefully designed. Indeed, in the paradigm of conservation of information, smooth landscapes can be source of significant active information [14]. Metabiology's construction of smooth landscapes is accomplished by running all viable programs, a computationally expensive approach that is only possible because there are no resource limitations.
Like AVIDA and ev, metabiology makes use of external information sources to assist in the search. Like the simple Hamming oracle, the halting oracle can be mined for information with various degrees of sophistication. Evolution thus requires external sources of knowledge to work. The degree to which this knowledge is used can be assessed using the idea of active information.They conclude: "In order for evolution to occur in these models, external knowledge must be imposed on the process to guide it. Metabiology thus appears to be another example where its designer makes an evolutionary model work. ... Consistent with the laws of conservation of information, natural selection can only work using the guidance of active information, which can be provided only by a designer." Properly understood, in other words, these programs demonstrate that evolution requires intelligent design.
Biology's understanding of how evolution works, which has long postulated a gradual process of Darwinian natural selection acting on genetic mutations, is undergoing its broadest and deepest revolution in nearly 50 years.At the heart of the revolution is something that might seem a paradox. Recent discoveries have only strengthened Darwin's epochal conclusion that all forms of life evolved from a common ancestor. Genetic analysis, for example, has shown that every organism is governed by the same genetic code controlling the same biochemical processes. At the same time, however, many studies suggest that the origin of species was not the way Darwin suggested or even the way most evolutionists thought after the 1930s and 1940s, when Darwin's ideas were fused with the rediscovered genetics of Gregor Mendel.Exactly how evolution happened is now a matter of great controversy among biologists. Although the debate has been under way for several years, it reached a crescendo last month, as some 150 scientists specializing in evolutionary studies met for four days in Chicago's Field Museum of Natural History to thrash out a variety of new hypotheses that are challenging older ideas.The meeting, which was closed to all but a few observers, included nearly all the leading evolutionists in paleontology, population genetics, taxonomy and related fields.No clear resolution of the controversies was in sight. This fact has often been exploited by religious fundamentalists who misunderstood it to suggest weakness in the fact of evolution rather than the perceived mechanism. Actually, it reflects significant progress toward a much deeper understanding of the history of life on Earth.At issue during the Chicago meeting was macroevolution, a term that is itself a matter of debate but which generally refers to the evolution of major differences, such as those separating species or larger classifications. Most agree that macroevolution is, for example, what made crustaceans different from mollusks. It is the process by which birds and mammals evolved out of reptiles. It is also what gave rise to major evolutionary innovations shared by many groups, such as the flower in higher plants or the eye in vertebrates.Darwin suggested that such major products of evolution were the results of very long periods of gradual natural selection, the mechanism that is widely accepted today as accounting for minor adaptations. These small variations, considered products of microevolution, account for such things as the different varieties of finches Darwin found in the Galapagos Islands. Under human control, or "artificial selection," microevolution has produced all the varieties of domestic dog, all of which remain members of a single species.Darwin, however, knew he was on shaky ground in extending natural selection to account for differences between major groups of organisms. The fossil record of his day showed no gradual transitions between such groups but he suggested that further fossil discoveries would fill the missing links."The pattern that we were told to find for the last 120 years does not exist," declared Niles Eldridge, a paleontologist from the American Museum of Natural History in New York.Eldridge reminded the meeting of what many fossil hunters have recognized as they trace the history of a species through successive layers of ancient sediments. Species simply appear at a given point in geologic time, persist largely unchanged for a few million years and then disappear. There are very few examples -- some say none -- of one species shading gradually into another.