Search This Blog

Saturday, 28 April 2018

Mimicking the original designer.

To Match the Genius of Centipedes, Bats, and Peacocks, Scientists Play a Game of Catch-Up
Evolution News & Views

Pure science seeks understanding of "the nature of nature" and its operations. Applied science takes the insights from pure research and makes it work for human interests. What if you had a single word that incorporates both? Here's a contender for such a word: Biomimetics. The application side is clear, because engineers and inventors try to imitate nature's designs. But the pure-research side becomes active in the process, because you have to understand something before you can imitate it. This is a win-win bonanza for 21st-century science, and intelligent design, if not by that name, is at the center of it.

Drug discovery. We see both sides of the coin in a paper in  Nature Communications,, "Biomimetically inspired asymmetric total synthesis of (+)-19-dehydroxyl arisandilactone A." It begins, "Complex natural products are a proven and rich source of disease-modulating drugs [applied science] and of efficient tools for the study of chemical biology [pure science] and drug discovery." Nature is way out in front, the next sentence suggests: "The architectures of complex natural products are generally considered to represent significant barriers to efficient chemical synthesis." [Emphasis added.] It takes Olympic-level effort to scale these barriers, but by studying how a medicinal plant builds a complex organic compound, Chinese scientists think they are learning how to synthesize other molecules of interest.

Spider-man wannabees. Researchers at the  American Institute of Physics sound like kids at a Spiderman movie. They say "Wow!" at the "impressive weight-lifting abilities" in the silk of a particular spider. The muscles of human weight-lifters are impressive enough at the molecular level, but "Variations of this dynamic geometry appear elsewhere in nature, exhibiting a variety of mechanisms and structures and inspiring development in artificial muscle technology," they say. "Spider silk, specifically Ornithoctonus huwena spider silk, now offers the newest such inspiration" for a team of Chinese and American scientists. Thinking ahead to artificial muscles, these researchers had to study the spider's silk at the micro-level, learning about the proteins involved and how they become activated by water.

These spider silk fibers, actuated by water droplets, showed impressive behavior in all the ways that matter to muscle performance (or to super heroes that may need them to swing from buildings).
Bat robotics. "Advanced robotic bat's flight characteristics simulates the real thing," announces a headline from Engineering at Illinois News. Everybody is aware that robotic drones are the hottest thing these days in everything from toys to weapons. The smart guys at University of Illinois, in cooperation with Jet Propulsion Laboratory, have built the latest iteration of their bat-mimicking "bat bots."

Bats have long captured the imaginations of scientists and engineers with their unrivaled agility and maneuvering characteristics, achieved by functionally versatile dynamic wing conformations as well as more than forty active and passive joints on the wings. However, their wing flexibility and complex wing kinematics pose significant technological challenges for robot modelling, design, and control.
Researchers at the University of Illinois at Urbana-Champaign and Caltech have developed a self-contained robotic bat -- dubbed Bat Bot (B2) -- with soft, articulated wings that can mimic the key flight mechanisms of biological bats.

A video (above) shows off the invention and boasts about its design. But the human engineers running a flight test at the end of the clip look like kids playing with paper airplanes compared to the 'biological bats' whose elegant motions are shown in this Nature Video."Whenever I see bats make sharp turns or perch upside down with elegant wing movements, I get mesmerized," the lead engineer remarks. Clunky as Bat Bot is at this stage, both Live Science  and New Scientist believe that exciting applications can come from this advancing technology.

Dragonfly drone. A lab in Massachusetts appears to be besting the Illinois team, by creating an even smaller drone that mimics dragonflies. On closer reading of the  Live Science story about the DragonflEye project, though, we learn that the team at Charles Stark Draper Laboratory is actually outfitting live dragonflies with electronic backpacks. This allows them to send commands to the insects' flight muscles, turning them into cyborgs that they can control. "DragonflEye sees these tiny flight masters as potentially controllable flyers that would be 'smaller, lighter and stealthier than anything else that's manmade,'" the article says, but we don't know if the Illinois team will call it cheating to use live insects.

Bee bots. If honeybee numbers keep dropping, how will our crops get pollinated? Some inventors think that tiny quadcopter drones might be recruited as "artificial pollinators" in the future. Watch a horse trot into this biomimetics tale:

As bees slip onto the endangered species lists, researchers in Japan are pollinating lilies with insect-sized drones. The undersides of these artificial pollinators are coated with horse hairs and an ionic gel just sticky enough to pick up pollen from one flower and deposit it onto another. The drones' designers are hopeful that their invention could someday help carry the burden that modern agricultural demand has put on colonies.
See the horse hairs up close in New Scientist's  coverage. Now a problem: how to scale this up to tackle crops like almond orchards that can stretch for miles, where each tree can have 50,000 flowers to pollinate. Elizabeth Franklin doesn't think robotic pollinators will ever compete with live honeybee (The Conversation). A U.K. researcher rubs it in (Live Science):

In a blog post, he wrote that there are roughly 3.2 trillion bees on the planet. Even if the robo-bees cost 1 cent per unit and lasted a year, which he said is a highly optimistic estimate, it would cost $32 billion a year to maintain the population and would litter the countryside with tiny robots.
"Real bees avoid all of these issues; they are self-replicating, self-powering and essentially carbon-neutral," Goulson wrote in the post. "We have wonderfully efficient pollinators already. Let's look after them, not plan for their demise."

Plant ceramics. Harvard  has a whole institute dedicated to biomimetics: the Wyss Center for Biologically Inspired Design. The wizards there are hot on the trail of leaves of grass, according to news from Wyss, and that's not just poetic license. Impressed by grass's ability to "support its own weight, resist strong wind loads, and recover after being compressed," they thought that if they could 3-D print something like that, it would enable a very useful material for many applications. In order to invent "ceramic foam" usable in a 3-D printer, they had to look at grass carefully. "The plant's hardiness comes from a combination of its hollow, tubular macrostructure and porous, or cellular, microstructure, they found. "These architectural features work together to give grass its robust mechanical properties." So by printing their foam into honeycomb-like shapes, they're getting close to printing hierarchical microstructures with desirable mechanical, thermal, and transport characteristics: "Inspired by natural cellular structures" in a common blade of grass.

Speaking of ceramics, another team is trying to imitate the "unique structural and functional capabilities" of nacre (mother-of-pearl), by "Using graphene networks to build bioinspired self-monitoring ceramics" (Nature Communications). Pages and pages of graphs, mathematics, and chemistry show it's not easy to imitate an oyster.

Peacock dye.The  American Chemical Society  is involved in the gold rush, too, excited to announce that "Peacock colors inspire [a] greener way to dye clothes." The iridescent colors of birds and butterflies come not from pigments, but from geometric structures at the nanoscopic level that intensify certain wavelengths of light. Everyone from fashion designers to parents to the EPA will be happy to learn about better dyes inspired by peacock feathers. "Testing showed the method could produce the full spectrum of colors, which remained bright even after washing," an ACS team said. "In addition, the team said that the technique did not produce contaminants that could pollute nearby water."

For those not afflicted by arachnophobia, Phys.org  tells about another team at the University of Akron working on a similar idea to 3-D print dyes inspired by (ready?) tarantula hairs.

Centipede robots. What kid hasn't been fascinated by the wave-like motion of dozens of feet in caterpillars, centipedes, and millipedes? Some who grew up to become scientists didn't forget that fascination. Japanese scientists publishing in PLOS ONE are among them, describing, "Decentralized control scheme for myriapod robot inspired by adaptive and resilient centipede locomotion." Read in this open-access paper about how they tackled one of the major challenges, developing "a control scheme that can coordinate their numerous legs in real time." Some of us have enough trouble controlling two legs, let alone dozens. The breakthrough came by "drawing inspiration from behavioral experiments on centipede locomotion under unusual conditions," they say.

There's something satisfying about watching the brightest scientific minds as they try to play catch-up with the genius of centipedes, bats, and peacocks. Biomimetics is not for lazy scientists. Nature's designs are too sophisticated for Darwinian storytellers. They stimulate inspiration, perspiration, and admiration, with potential applications to benefit us all -- and the key word is design.

Zigzagging on mount improbable?

Extinct Four-Eyed Monitor Lizard Busts Myth of a Congruent Nested Hierarchy
Günter Bechly



One of the most essential doctrines of Darwinian evolution, apart from universal common descent with modification, is the notion that complex similarities indicate homology and are ordered in a congruent nested pattern that facilitates the hierarchical classification of life. When this pattern is disrupted by incongruent evidence, such conflicting evidence is readily explained away as homoplasies with ad hoc explanations like underlying apomorphies (parallelisms), secondary reductions, evolutionary convergences, long branch attraction, and incomplete lineage sorting.


When I studied in the 1980s at the University of Tübingen, where the founder of phylogenetic systematics, Professor Willi Hennig, was teaching a first generation of cladists, we still all thought that such homoplasies are the exceptions to the rule, usually restricted to simple or poorly known characters. Since then the situation has profoundly changed. Homoplasy is now recognized as a ubiquitous phenomenon (e.g., eyes evolved 45 times independently, and bioluminiscence 27 times; hundreds of more examples can be found at Cambridge University’s Map of Life website).


Life’s Solution

This state of affairs compelled George McGhee, a paleobiology professor at Rutgers University, to write a book, Convergent Evolution: Limited Forms Most Beautiful (2011). He suggests that convergence is so common because viable forms are so limited. However, he fails to explain how evolution manages to find these limited solutions over and over again through a random search process. After all, selection only explains the survival of the fittest but not the arrival of the fittest.

Likewise, paleontologist Simon Conway Morris wrote two books, Life’s Solution (2003) and The Runes of Evolution (2015), in which he concluded that the incredible number of convergences came to be because evolution is not the contingent process postulated by Stephen Jay Gould (1989) in his book Wonderful Life. Gould thought that if we could somehow rewind the tape of evolution, everything would develop very differently. According to Conway Morris, the same novelties occur so often in unrelated groups that this suggests these novelties are not products of mere contingency but instead are so constrained by external factors that rewinding the tape of evolution would lead to very similar results (also see Conway Morris 2009 ).

Of course, Darwinists are not comfortable with the deeper implications of a non-contingent process of evolution (Ruse 2004, Coyne 20122015), which smacks of being designed for a purpose. Apart from that, most biologists do not even read between the lines that this is basically a surrender of a fundamental paradigm of Darwinism, which claimed that similar biological novelties suggest phylogenetic relationship (common ancestry).

The problem gets worse the more we learn about the fossil record, the distribution of characters among recent organisms, and the genetic and developmental underpinnings of many characters. Some taxonomists had hoped that genomics might save biosystematics from the evil of homoplasy, since the sheer amount of data would flood the “minor” noise of homoplasies. But this turned out to be a pipe dream as the numerous conflicting molecular phylogenies easily document. Even those genetic characters that were believed to be impossible to suffer from convergence, like transposable elements, turned out to be incongruent (e.g., in the case of the gorilla, chimp, and human trichotomy), which required a whole new epicycle of ad hoc explanation in terms of incomplete lineage sorting.

The Third Eye

The third eye of vertebrates provides a perfect illustration of this point, topped by a very surprising recent discovery reviewed below. What, a third eye? I am neither talking about New Age spiritualism, nor about the cyclops of ancient Greek mythology, but about a little known light-sensing organ. 

Unpaired median dorsal eyes, along with a lateral pair of more efficient eyes, are known from crustaceans (nauplius eye), arthropods (e.g., 3 ocelli in insects), and vertebrates (third eye, pineal eye, or parietal eye on the top of the skull). The latter is always smaller than the paired lateral lens eyes, and in living species very inconspicuous. Evolutionists believe this organ to be possibly homologous to the light-sensitive spot on top of the head of lancelets, and the median eye of tunicate larvae, because phylogenetic studies suggested that tunicates are the closest relatives of vertebrates, which are sometimes supposed to have originated from a kind of neotenic tunicate larva.



All vertebrate eyes, paired lateral as well as unpaired median ones, develop from an evagination of the brain (diencephalon). The posterior part of the diencephalon (epithalamus) develops an initially single dorsal evagination (pineal complex), which then divides into two roughly bilaterally symmetric organs that rotate their location to become a caudal pineal organ (pineal gland) and a rostral parapineal organ (Kolb et al. 1998). These often retain a slight asymmetry with the pineal organ originating more right and the parapineal organ more left of the brain midline.

This corresponds with the fact that modern lampreys possess two median eyes that are either oriented on top of each other or behind each other, while some Devonian fish (e.g., arthrodira, stegoselachians, and very early lungfish) had two pineal/parietal foramina in the skull beside each other (Eakin 1973: 16-17). In modern aquatic jawed vertebrates (“fish” in everyday language), the third eye, if developed at all, is formed by the pineal organ, while the parapineal organ is more or less reduced.

In tetrapods, the caudal pineal organ is atrophied as a still photoreceptive pineal gland (epiphysis), while the rostral parapineal organ forms the third eye called the parietal eye. Among recent vertebrates the parietal eye is absent in salamanders, turtles, crocs, birds, and mammals, but very well developed in lepidosaurs (juvenile tuataras and many lizards) with a lens, cornea, and an everted retina, with the latter being more similar to that of an octopus rather than to the inverted retina of the lateral lens eyes.

In juvenile frogs and toads a similar, but less sophisticated third eye develops as a terminal vesicle of the parapineal organ.hese third eyes in vertebrates do not allow image-like vision but only differentiate light from dark. They may help in detecting shadows from predators attacking from above, as suggested by the behavior of some lizards. More importantly they are crucial for circadian and seasonal rhythms. This also happens to be the function of the pineal gland in humans, which produces the sleep hormone melatonin. Many other vertebrate species have an intracranial pineal organ as deep-brain photoreceptor. In fossil vertebrates, the possession of an extracranial third eye can be inferred from the presence of a parietal foramen between the parietal bones of the skull.
  Therefore, we have a pretty good knowledge about the distribution of third eyes in fossil and modern vertebrates. Here is a list of the haves and have nots:

lampreys, but not the blind hagfish
Paleozoic agnathan fish like ostracoderms and placoderms
pelagic sharks
some ray-finned fish (e.g., Paleozoic stem actinopterygians, paddlefish, catfish, tuna, and even the blind cave fish Astyanax mexicanus)
fossil “crossopterygians,” but not the modern coelacanth
early fossil lungfish, but not all modern ones
lobe-finned and “stegocephalian” stem tetrapods (e.g., Eusthenopteron, Elpistostege, Panderichthys, Tiktaalik, Acanthostega, Seymouria)
stem amphibians (Temnospondyli) and modern juvenile frogs and toads (Anura), but not salamanders (Urodela) and caecilians (Gymnophiona)
stem reptiles (e.g., Paleothyris)
Parareptilia (Anapsida like Captorhinus)
Lepidosauria (well visible in tuatara juveniles, mosasaurs, monitor lizards, iguanas, true lizards), but not snakes, geckos, and chameleons
Ichthyopterygia (ichthyosaurs)
Sauropterygia (placodontians, nothosaurs, plesiosaurs)
the oldest and most primitive stem turtle, Eunotosaurus, but not any later turtles (including Pappochelys)
early archosauromorphs like Prolacerta, proterosuchids, and arguably Triopticus primus, but not any more advanced archosauriforms (incl. Euparkeria, Phytosauria, crocodiles, pterosaurs, dinosaurs, and birds)
Permian mammal-like reptiles (“pelycosaurs,” “therapsids,” Cynognathia), but not any mammals (including Triassic primitive mammaliaforms like Morganucodon)
Guess what evolutionists must assume? Based on the just mentioned distribution of pineal and parapineal eyes and the parietal foramen: primitive agnathan vertebrates had two median eyes formed by the pineal and parapineal organ. These were retained at least up to the early ancestors of lungfish (documented by their paired parietal foramen), but the parapineal eye was independently reduced in Chondrichthyes (sharks and rays), ray-finned fish, coelacanths, and modern lungfish. In most modern bony fish (including ray-finned fish, coelacanths, and some modern lungfish) the pineal eye was reduced multiple times independently. In the tetrapod lineage the pineal eye was reduced as well, and only the parapineal eye retained as the parietal eye. This parietal eye was then reduced independently in non-anuran amphibians, some lizards, snakes, turtles, archosaurs (crocodiles, pterosaurs, dinosaurs, birds), and in mammals.

Consequently, only juvenile frogs and toads and well as juvenile tuataras and many lizards retained a parapineal parietal eye among living land vertebrates. What a wild ride. And all along the way, the magic wand of natural selection allegedly explains why the same organ appears and disappears and reappears, because it gains adaptive value and loses it, and gains it again. Not convinced? Neither am I. But the biggest surprise is yet to come.

Fasten Your Seatbelts, Please

Clearly, the presence or absence of a third eye in vertebrates shows an extremely incongruent pattern. Evolutionists need to explain away this incongruence. Since most groups of Paleozoic vertebrates had a third parietal eye, evolutionists have to assume that many different groups of vertebrates independently “decided” after the Permo-Triassic mass extinction that they could simply dispense with this previously so useful and adaptive innovation. Therefore, evolutionists need not only the ad hoc assumption of multiple independent secondary reductions, but also a causal explanation for this strange phenomenon.

Suggested explanations include reduced color vision correlated with freshwater habitat, or nocturnal lifestyle, or a transition to endothermia (Gerkema et al. 2013Benoit et al. 2016Emerling 2017a)
. Nocturnality as an explanation would indeed agree with the fact that the third eye is absent in the nocturnal geckos and in snakes, which are believed to have originated from a nocturnal burrowing ancestor, and that it is only prominent in juvenile tuataras, which have a diurnal lifestyle, while it is obliterated in adults, which have a nocturnal lifestyle. However, that two different causal explanations (nocturnal bottleneck versus transition to endothermia) have been suggested for the reduction of the parietal eyes in mammals shows that we are actually dealing with contrived ad hoc explanations. Whatever the data might be, a fancy narrative could easily be forged to explain this evidence.

Emerling (2017a) demonstrated that the photosensitive opsin proteins parietopsin and parapinopsin, found in the third eye of lampreys and lizards, are only present as nonfunctional pseudogenes in turtles, crocodiles, and birds, which all lack a third eye (Caspermeyer 2017).
 To be fair, remnants of broken genes (pseudogenes), if they should truly be devoid of function (many ID proponents would predict this to be false), may indeed lend some support to the notion of common ancestry and a secondary reduction of the third eye in these groups. This was readily emphasized by Emerling (2017b), who clearly seems to have an evolutionary axe to grind, at his personal blog Evolution for Skeptics.

However, he admitted in his technical paper that these pseudogenes in turtles, crocodiles, and birds actually do not share inactivating mutations, so that the inactivation cannot be easily attributed to a common archelosaurian ancestor. This is at least strange for crocs and birds, because even their assumed archosauriform ancestors already shared the absence of a parietal eye, so that the inactivation should be expected to be homologous. Apart for this issue, merely appealing to common ancestry and multiple secondary reduction of course does nothing to explain what really is going on.

Emerling is aware of this and therefore suggested a nocturnal bottleneck in crocodylians as a causal explanation for their loss of the parietal eye. However, there is no evidence at all for such a bottleneck in the archosaur stem line, and this is fatal for his argument because it is not just crocodylians but all archosaurs that lack a parietal eye and its opsins, so that a nocturnal bottleneck in crocs would be totally irrelevant and much too late to explain anything. This also shows that the shared endothermia of birds and mammals is no good explanation for their shared lack of the parietal eye and its opsins either, because birds are believed to have ultimately originated from archosaurs that already lacked a parietal eye but were not endothermic at all. Most of the ad hoc explanations that may seem plausible at first sight thus become rather dubious at closer examination.

A Much Bigger Problem

Anyway, a much bigger problem for Darwinism arises from independent (homoplastic) gains of complex characters, rather than independent losses, especially when highly implausible evolutionary scenarios are implied. Here is a recent example for this that also involves the median eyes of vertebrates.

Based on two fragmentary fossils, Smith et al. (2018)
 just described the new monitor lizard Saniwa ensidens from the 49 million year old Bridger Formation in Wyoming. Both known specimens surprisingly had four eyes! Additional to the normal pair of lateral lens eyes, and the usual parietal third eye of lizards, this new species actually had a forth pineal eye like a lamprey. Not a single other jawed vertebrate has something remotely like this, even though this fossil lizard is the closest relative of the modern monitor lizard genus Varanus and thus deeply nested within modern land vertebrates.

What? This sounds almost too weird to be true. Yet since the article was published on April 2, 2018, in the prestigious journal Current Biology it is definitely not an April Fools’ prank. The authors bite the bullet and boldly propose that the extinct monitor lizard re-evolved a fourth eye from the pineal organ, similar to the assumed ancestral state in lampreys. This means that even though a pineal eye was at least lost since the origin of tetrapods about 390 million years ago, 340 million years later just another ordinary species of monitor lizards came along and said, “Hey, what about having four eyes again?” It then re-evolved this organ that was obviously not of any sufficient adaptive value to any other tetrapod in the history of life to let evolution’s unlimited creative power do its magic. Nevertheless, this remarkable effort did not save this species from extinction without any surviving descendants, while numerous monitor lizards without fouth eye were more lucky.
  In his review of the surprising discovery Witmer (2018) notes:

How could a pineal eye simply re-evolve? … But why Saniwa? What’s special about this lizard? Nothing is special, as far as we can tell. Smith and colleagues offer some suggestions, but it’s fair to say that the functional benefit of having both parapineal and pineal eyes remains obscure. This finding also means that all of a sudden we’re no longer sure which organ — pineal or parapineal eye — was peeking through the parietal foramen of a host of extinct ancient tetrapods.

Finally, there is a last punchline mentioned by  Witmer (2018):

In 1893, Belgian paleontologist Louis Dollo formulated the Law of the Irreversibility of Evolution, which simply states: that which is lost shall not be regained. Some laws are meant to be broken, and the re-evolution of a pineal eye in Saniwa is not the first atavism to be reported. Still, it’s not a common occurrence, and it’s so rare in this case that it raises new questions.

Obviously, evolutionary “laws” are quite malleable and have to give way when they become too cumbersome. Conflicting evidence does not matter, broken laws do not matter. What really matters is preserving the great narrative of pond scum to us.

We can safely conclude: it is an epic myth, willingly perpetuated by evolutionary biologists, that the similarities between organisms mostly fall in a hierarchic pattern of nested groups and thus suggest common ancestry and indicate phylogenetic relationship. In reality this claim is contradicted by a flood of incongruences and reticulate patterns that shed doubt on fundamental paradigms of evolutionary biology like the notions of homology and common descent. This inconvenient conflicting evidence is explained away with a pile of ad hoc hypotheses, correlated with more and more contrived and implausible evolutionary scenarios.

Literature:

Faith,the superlative of knowledge not its antithesis.

“Faith” and the Multiverse: A Response
Paul Nelson



Regarding Multiple Problems with the Multiverse,” I grasp the argument Professor Brian Keating is making in his PragerU video — namely, that current cosmologists who invoke a multiverse do so on the slenderest (or no) evidence. However, his use of the word “faith” in this context is really pernicious.

“Faith,” in the Biblical sense, is never the antonym of “knowledge.” A much better use of “faith” would mean “trust on the basis of evidence already provided,” which (to my understanding) fits well with every Biblical episode where faith is mentioned or commended.

Furthermore, faith is held up consistently throughout the Bible as most praiseworthy, and indeed, the gift of God (Ephesians 2:8). Rather a sharp reversal in reference, therefore, when the same noun is used to denote groundless credulity.

Which, really, is what Professor Keating means: “I don’t have enough credulity to posit a multiverse.” Even that word choice, however, fails, because it entails that theists are also credulous, only to a lesser degree.

What is being lost in this rhetoric? Truth and falsehood. Not degrees of greater or lesser credulity. Why not say, “While attractive for many philosophical reasons, the multiverse is a false hypothesis”?

I fear that when we hold our own positions, not because we know (or even believe) they are actually true, but for other reasons, we cannot say that an opposing position is false: we can’t know that to be the case. So then the discussion becomes who has the bigger or smaller credulity heap, on which they are standing.


Please — let’s break this noxious intellectual habit of using “faith” as the antonym of “knowledge.”

Sunday, 22 April 2018

In the lion's den?

Online Seminar: Paul Nelson Will Discuss Ontogenetic Depth — in Depth! 
Evolution News @DiscoveryCSC

This Saturday, April 21, Discovery Institute Senior Fellow Paul Nelson will give an online seminar about the controversial and widely-thought-to-be-debunked concept of “ontogenetic depth” (OD). Join us at 4 PM Eastern, which is 3 PM Central or 1 PM Pacific.  At the ordained hour, just go here.

OD has been proclaimed a “pseudoscientific idea” by no less an authority than Wikipedia, and Paul himself readily acknowledges OD is currently impossible to measure — so why on earth would he bother talking about OD live, while fielding questions?

Possible answers:

Paul is obviously crazy and has been for a long time.
Paul doesn’t know when to stop digging.
Never was there a more fitting acronym for a scientific idea than “OD.”
Paul has grown fond of “Paul Nelson Day” and doesn’t want our critics to forget it again next year (see Stockholm Syndrome).
OR, counter-intuitively — perhaps there is much more to OD than seems apparent.

We’ll go with the last and counter-intuitive answer, so tune in. Background reading on OD is here and here (2011 series) and herehere, and here (2015 series).

Saturday, 21 April 2018

On one of natural history's other 'explosions'.

The Dinosaur “Explosion”
Cornelius Hunter

In the famed Cambrian explosion most of today’s animal phyla appeared abruptly in the geological strata. How could a process driven by blind, random mutations produce such a plethora of new species? Evolutionist Steve Jones, in his book Darwin’s Ghost (2000), has speculated that the Cambrian explosion was caused by some crucial change in DNA. “Might a great burst of genetic creativity have driven a Cambrian Genesis and given birth to the modern world?” (p. 206)

What explanations such as this do not address is the problem of how evolution overcame such astronomical entropic barriers. Rolling a dice, no matter how creatively, is not going to design a spaceship.

The Cambrian explosion is not the only example of the abrupt appearance of new forms in the fossil record, and the other examples are no less easy for evolution to explain. Nor has the old saw, that it’s the fossil record’s fault, fared well. There was once a time when evolutionists could appeal to gaps in the fossil record to explain why the species appear to arise abruptly, but no more. There has just been too much paleontology work, such as a new international study on dinosaurs published this week, confirming exactly what the strata have been showing all along: new forms really did arise abruptly.


The new study narrows the dating of the rise of dinosaurs in the fossil record. It confirms that many dinosaur species appeared in an “explosion” or what “we term the ‘dinosaur diversification event (DDE)’.” It was an “explosive increase in dinosaurian abundance in terrestrial ecosystems” (emphasis added). As the  press release explains:

First there were no dinosaur tracks, and then there were many. This marks the moment of their explosion, and the rock successions in the Dolomites are well dated. Comparison with rock successions in Argentina and Brazil, here the first extensive skeletons of dinosaurs occur, show the explosion happened at the same time there as well.

As lead author Dr. Massimo Bernardi at the University of Bristol explains, “it’s amazing how clear cut the change from ‘no dinosaurs’ to ‘all dinosaurs’ was.”

There just isn’t enough time, and it is another example of a failed prediction of the theory of evolution.

Geologists' rewrites make a mess of Darwinian storytelling re:the cambrian explosion.

Geologists Kick Out Props for Evolutionary Theories of the Cambrian Explosion



Friday, 20 April 2018

More on why the search for a purely chemical cause for abiogenesis is a fool's errand

The American Chemical Society recently dedicated a whole issue of Accounts of Chemical Research to the puzzle of life's chemical origins. The issue does a thorough job of bringing together some of the latest theories and research in the field, and several of the articles address fundamental problems in certain models of origin-of-life research. For example, a paper by Benner et al. points out that the RNA-world model is unattractive because the chemical bonds involved are unstable and the reaction requirements are too specific and unlikely for an early Earth environment.

Another article addresses a possible solution to nature's preference for left-handed amino acids and right-handed sugars (also known as homochirality).

A couple of papers try to explain why DNA is composed of the particular bases A, T, C, and G. Several others discuss self-replicating systems. Another paper discusses how proto-cells may have been formed from lipid micelles. And still others assume an "RNA-first" world, while a few prefer a "metabolism-first" world.

Indeed, this collection offers some of the latest research in the field. We will address a sampling of the research papers. If you want some background on origin-of-life research, see Casey Luskin's recent article "Top Five Problems with Current Origin-of-Life Theories."

Let's first address the editors' introduction, which makes use of some remarkably convoluted rhetoric.

The editors define chemical evolution as including "the capture, mutation, and propagation of molecular information and can be manifested as coordinated chemical networks that adapt to environmental change." In this type of system, one in which information-carrying molecules must be made and propagated, the editors concede that building life from the bottom up requires some aspect of molecular intelligence:

These diverse approaches to deconvolution and reintegration of the origins of the cell, projected in collaboration through the lens of chemical evolution, suggest a remarkable degree of intrinsic molecular intelligence that guide the bottom-up emergence of living matter.
The term "molecular intelligence" is not typically used in origin-of-life research, despite the authors' statement that it is not a new concept: in their view, Darwin's own theory of life beginning in a chemically rich "warm pond" is an example of molecular intelligence. While there are several ways to describe molecular behavior, from statistical mechanics to Brownian motion to self-assembly, making molecules the intelligent actor in the origin of life ascribes a property to molecules that we have yet to prove. They are information-carrying. They are self-replicating. But to say they have intelligence implies that molecules are capable assembling themselves into meaningful structures, something that usually requires knowledge of the end product. This is akin to saying a Lego model of the Millennium Falcon was built by the Legos themselves which (who?) are endowed with an intrinsic "construction intelligence." (Actually, this analogy would be more accurate if the Legos built a working model of the Millennium Falcon that can conduct self-repairs and can self-replicate.)
Let's try to unpack the final paragraph of the editors' introduction:

While our objective is to decipher the evolutionary rules that directed the transition from inanimate matter to life, we recognize that the march of molecular history likely had many pathways.
One of the fundamental research problems in chemical evolution is the transition from non-life to life. This requires more than having the component parts present. In order for this bottom-up, parts-to-whole approach to work, there is some threshold that must be crossed that sets in motion the operations of a cell (or a proto-cell) such that it has the characteristics of a self-sustaining, living organism. That threshold remains a mystery in chemical evolution research.
Accordingly, this issue circumscribes the functional concepts, leveraging Nature's platforms for molecular information, using its existing chemical inventory or libraries, and, with selective and judicious tinkering along the way, elaborates the basic rules of bottom-up self-assembly guided by both digital and analog molecular recognition systems.
This appears to mean that rather than re-inventing the wheel, so to speak, this issue of the journal will focus on deducing the rules for constructing an organism from the bottom-up. The authors will do this by using what we already know about DNA and RNA to construct system using known chemicals and enlisting the help of chemists to guide the reactions where they see fit to do so. But this calls into question just what is meant by "self"-assembly. In materials science, self-assembly is usually regarded as repeated, ordered patterns of specific molecules under the right environmental conditions. The setup for making even a simple self-assembled system (e.g. a self-assembled monolayer) requires quite a bit of forethought and planning on the part of the chemist.
In addition, the diversity in approaches to understanding and employing chemical evolution is as important as the diversity in chemical composition required to promulgate evolution itself and suggests that collaboration among these diverse approaches to gaining insights into chemical evolution and working toward the interfaces among them will be extraordinarily rich with opportunities.
In origin-of-life research, there are, broadly speaking, two camps: The RNA-first world, and the metabolism-first world. There are several nuances to each position, but for brevity's sake, we can think of the RNA-first camp as those who believe the first biomolecules were nucleotides (adenine, uracil, cytosine, and guanine), while the metabolism-first camp believes the first biomolecules were amino acids (e.g., glycine, alanine, thiamine). The RNA-first camp assumes that ribozymes were key players in the formation of the first genetic code. The metabolism-first camp relies on the self-assembly of biomolecules to form the first protein or the first metabolic pathway. (See here for more information on the RNA-world hypothesis.)
These are two fundamentally different approaches to the origin of life. Both have strengths and both have problems. The editors say that there were "multiple pathways" to the origin of life and so perhaps both are right. They assume that collaboration between the camps will lead to greater understanding, but this seems unjustifiably optimistic.

Proposing compromise may seem like a commendable thing -- it's generally a safe way of making yourself appear to be taking the moral high ground. But in this case, the respective approaches have completely different starting assumptions. Each begins with a different set of building blocks, not to mention a different synthetic process. It is also strange to assume that there were many paths to the origin of life yet that somehow these disparate paths came together to form early organisms. How, exactly? More on this later.