Search This Blog

Showing posts with label Intelligent Design.. Show all posts
Showing posts with label Intelligent Design.. Show all posts

Friday, 28 June 2024

JEHOVAH'S folly trumps man's wisdom ?

 New Paper on the Panda’s Thumb: “Striking Imperfection or Masterpiece of Engineering?”


Readers are invited to consider my new paper,   “The Panda’s Thumb: Striking Imperfection or Masterpiece of Engineering?The abstract is below.

Abstract: Key Points of the Contents 

Before going further, a brief note on the synonyms that I’m using here such as the “double/dual/complementary function” of the panda’s thumb. Each of the synonyms has its own subtly different overtones. With this in mind, I hope the basic points discussed below may be better understood. 

Above: “Some Key Points in a Long-Lasting Controversy”: Different views of evolutionary biologists on the panda’s thumb. Some assessments of the panda’s dexterity by intelligent design theorists.
Introduction: The panda’s thumb has become a paradigm for evolution in general. Links to articles by Stephen Dilley, and notes on the recent controversy between Nathan Lents and Stuart Burgess.
If the panda’s thumb is an embodiment of bad design, where are the evolutionists’ proposals indicating how they could have done better?
Some citations from a public talk by Stuart Burgess on the ingenious design of the wrist.
A massive contradiction within the theory of evolution itself.
Double/dual/complementary function is often overlooked.
“What makes the modern human thumb myology special within the primate clade is … [the appearance of] two extrinsic muscles, extensor pollicis brevis and flexor pollicis longus.”
It is a fundamental mistake to use the human thumb as a yardstick for the perfection or imperfection of the panda’s thumb.
A closer look at the differences of the radial sesamoid in a basal ursoid in comparison to that of the panda (Ailuropoda) for gripping and walking and the grasping hand of Homo sapiens according to Xiaoming Wang et al. (2022).
In comparison to other bear species, “only in A. melanoleuca can it be considered to be hyper-developed, reaching a similar size to that of the first metacarpal.”
Doubts concerning a simple homology of different sesamoid bones in various species.
Radial sesamoid as the ideal starting point to develop a thumb-like digit in pandas.
Natural selection of the radial sesamoid according to Wang et al. as well as Barrette in contrast to Stanley.
Implications of the ruling neo-Darwinian paradigm (gradualism plus natural selection) for the origin of the panda’s thumb.
Further discussion of Barrette’s points as “the length of the radial sesamoid, and therefore that of the false thumb, is limited firstly by its location under the hand,” etc.
Less efficient feeding would emphasize the enormous problem involved in the theory of natural selection.
The panda’s ecological impact and the “Optimal Panda Principle” in contrast to the evolutionary “Panda Principle” of Gould and his followers.
How to pick up little Necco candy wafers with thumbless mittens?
When directly observing pandas in zoos, Gould and Davis marveled at the dexterity/competence/virtuosity of the panda’s hand. I have done so, too. The panda’s hand is not “clumsy” at all.
Key question from two PhD students at the Max Planck Institute of Plant Breeding Research (Cologne) who came to my office and asked: Wouldn’t it be much more economical for an intelligent designer to modify, as far as possible, an already existing structure for some new functions than to create a totally new structure for similar roles/purposes/tasks from scratch?
Some comments on Barette’s statement that “We owe this metaphor [of approximate tinkering/bricolage] to François Jacob, a French biologist and recipient of the Nobel Prize. Far from being perfect, such approximate tinkering is a trace left by evolutionary history,” and thus a proof of it.
Davis on the enlarged radial sesamoid as “unquestionably” a direct product of natural selection.
Possible number of genes involved in the origin of pandas according to Davis and some others.
What do we know in the interim about panda genetics?
SNPs in the Ursidae including our beloved pandas.
As already mentioned in other articles of mine (for example: https://www.weloennig.de/Hippo.pdf): Note please that virtually all highlighting/emphasis is by W.-E. L. (except italics for genera and species as well as adding a note when the cited authors themselves have emphasized certain points). Why so often? Well, since many people do not have the time to study a more extensive work in detail, these highlights can serve as keywords to get a first impression of what is being discussed. 

Concerning the key points enumerated above: Page numbers may change in a future update, and so are not presented here. Incidentally, citations do not imply the agreement of the authors quoted with my overall views nor vice versa. Moreover, I alone am responsible for any mistakes.

On questions concerning absolute dating methods, see http://www.weloennig.de/HumanEvolution.pdf, p. 28. 


Thursday, 27 June 2024

technology of the zygote vs. Darwin.

 Let’s Think About a Zygote Like an Engineer


Having read Evolution News for years, contributing an occasional article or two, in addition to my 81-part series on “The Designed Body,” I’ve noticed that there’s a certain way we proponents of intelligent design tend to frame our arguments. We usually provide information on what it takes for life to work, rather than just how it looks (per much of neo-Darwinism). Then we look for reasonable explanations of causation which must include where the information came from to properly produce, assemble, and coordinate all the necessary parts of a given system that we know is absolutely needed for survival (most of that is absent from neo-Darwinism).

But in my collaboration with Steve Laufmann to produce our book Your Designed Body, we came to the conclusion that a different style may be more useful. What we propose is that, in addition to what’s described above, we also engage readers with examples of “problem-solving” just like engineers do it. After all, it takes one to know one. If you’ve never used mental energy to try to solve any one of these hard problems of life, then how can you appreciate what it took to come up with and apply the solution? 

Let’s try the following as an exercise. Once you’ve gone through it, you’ll be better prepared to understand all the causal hurdles that had to have been surmounted. And this will allow you to ask better questions and not be as vulnerable to many of the “just so” stories of neo-Darwinism. 

“Separation of Concerns”

Recently, there was an article in The Scientist, “The First Two Cells in a Human Embryo Contribute Disproportionately to Fetal Development.” It noted a study published in Cell, “The first two blastomeres contribute unequally to the human embryo,” indicating that “a research team showed that, contrary to current models, one early embryonic cell dominates lineages that will become the fetus.” 

The gist of the article was that the current thinking — that it’s at the eight-cell stage where totipotent embryonic cells take the first “fork in the road” of commitment to developing into the fetus or the placenta — may be incorrect. It would now seem that this first “separation of concerns” (as Laufmann and I call it) may take place earlier on, when the zygote divides into the first two blastomeres. 

Ingenious methods were used to label and track the cell lineage from the two-cell to the blastocyst stage:“Thus, they could determine the contribution of each cell to the development of two early structures: the trophectoderm (TE) that becomes the placenta and the inner cell mass (ICM) that eventually produces the fetal tissue.” 

“They are not identical,” explains Magdalena Zernicka-Goetz, a developmental and stem cell biologist at Caltech and the University of Cambridge who is a study co-author. “Only one of the two cells is truly totipotent, meaning it can give rise to body and placenta, and the second cell gives rise mainly to placenta.” She adds, “I was always interested in how cells decide their fate.” The article in The Scientist concludes by telling us that “next, Zernicka-Goetz aims to investigate the features and origins of the differences between clones at the two-cell stage.”

Points to Ponder

It is clear that scientists still do not fully understand how human life develops from the zygote to a newborn and then into a mature fertile adult. One has to wonder what signaling and communication must take place at exactly the right times and in the right orders for all of this to happen properly, never mind where the information and instructions came from. Despite this self-acknowledged lack of understanding, we are told by evolutionary science that it certainly was an unguided and undirected natural process that brought it into being, and not a mind at work, as intelligent design contends. 

What do you think? If you took your car to a mechanic and he told you that he has no idea what’s wrong with it but he’s sure he can fix it, would you engage his services? Just because the scientist is smarter than you about what parts do what and how, that doesn’t necessarily mean that her conclusions about causation are true. After all, in saying that “I was always interested in how cells decide their fate,” she’s attributing agency, a mind at work, to the zygote. So don’t be misled.

Human Life Is a Hard Problem

Actually, life is a series of millions of hard problems that have to be solved all the time, or else. I’m talking about, among many other things, the cellular, metabolic, anatomical, and neuromuscular problems of human life. Let’s start from square one — the human zygote — how each of us began after the sperm of our father joined with the egg of our mother within her womb. That is the one cell from which, within nine months, we developed into a three-trillion-cell newborn with all the equipment we needed to survive. 

If you could go back in time to that moment in your life, be nanosized and micro-pipetted into your own first cell, what would be the first problem you’d have to solve? In other words, once the zygote comes into being, what’s the first thing it has to do? 

Well, if it’s going to become a newborn in nine months or so, it’s got to start dividing. But that won’t happen for at least 24 hours, so you have to consider what else may be more important as the zygote floats within the fluid of your mom’s uterus.

The chemical content of the fluid inside the zygote (high potassium, low sodium) is the opposite of what’s in the fluid surrounding it (low potassium, high sodium). And because these ions can cross the cell membrane, diffusion would naturally make them try to equalize on both sides (inside and outside the zygote) which would spell disaster. So, the sodium/potassium pumps in the zygote’s cell membrane have to kick in right away to keep pushing sodium out and bringing potassium back in, right?

Yes, the action of the million or so sodium/potassium pumps in the zygote’s cell membrane are needed for it to stay alive. But what do they need to do their work?

All work requires energy. So, as with all of life, the first priority of the zygote is to generate enough energy through glycolysis (without oxygen) and cellular respiration (with oxygen). The zygote needs oxygen and glucose (or other substances) to metabolize to get the energy it needs.

And if the zygote’s going to divide into two cells, then four, eight, sixteen, and more, then it’s also going to need nutrients to be able to make more copies of itself. Where does the new human life get the oxygen and nutrients it needs, and how does it make sure of its supply until it becomes a newborn? 

The Engineering Problem

This is how Steve Laufmann and I framed this engineering problem in our book:

All cells need oxygen and nutrients. Early life is no exception. Fertilization results in a zygote, which multiplies through cell division to become an embryo. In the early phase, the embryo gets what is needed by diffusion from the surrounding fluid. This works when there’s only a few dozen cells. But within several weeks the embryo will grow into a fetus, and in a few months into a newborn with trillions of specialized cells organized into coherent, interdependent, finely tuned organ systems. For this to be possible, the embryo needs a better way to get oxygen and nutrients, and to get rid of carbon dioxide and waste materials. If he cannot meet this challenge, he will not survive. But he’s in a special situation, dwelling inside his mother, so he’ll need a solution altogether different from anything else in the body’s inventory — a distinct yet temporary system that can meet this need while he’s developing his permanent internal systems.

We go on to ask a very important engineering question:

How do you build a series of finely tuned, coherent interdependent systems, each necessary for life, and stay alive the whole time? It just wouldn’t do if the body needed to go dead for a while, build some stuff, then come back to life when everything was ready to go. What the child in the womb needs is a complete set of temporary systems to meet the needs of his rapidly growing body, to keep it alive until its own systems are ready to take over. Then at birth, when they are no longer needed, these systems must be discarded as the child transitions to long-term systems.

The Solution Is the Placenta

The  answer to the very hard engineering problem we asked above is the placenta. Somehow or other the zygote has the foresight to know that down the road it will develop into a fetus that requires the placenta for its metabolic and nutritional needs. 

This is how we explain the solution in our book:
           Tissues of the embryo (TE) combine with tissues of the mother (lining of the uterus) to make the placenta — a totally separate organ that provides the scaffolding needed to keep the developing child alive. The placenta enables the mother to sustain the developing child while his internal organ systems and tissues are being fabricated, integrated, and launched. The developing child is, quite literally, on life support between the zygote phase and birth, when his body is finally ready to take over the job.

Up until this recent study it was thought that it’s not until the embryo consists of at least eight cells that some of them start to commit to being part of the placenta (TE). But now it seems that it takes place at the two-cell stage. If your nanosized self is inside the zygote, which lever do you pull to make sure that one of the two forming blastomeres goes down the TE-track? And even more important, where did the lever come from? 

It appears that, based on the findings of this study, the answer to the first question will be the concern of future research. But since, as we are regularly assured, we all know that life came about from the unguided and undirected processes of natural selection acting on random variation, the second question is assumed to have already been answered back in 1859, before we knew any of these intricate particulars and when biological systems were assumed to be vastly simpler than they turned out to be. What do you think? Any questions?

Tuesday, 25 June 2024

Common design vs. Common descent.

 New Paper Argues that Variant Genetic Codes Are Best Explained by Common Design


A popular argument for a universal common ancestor is the near-universality of the conventional genetic code. Critics of common descent often point to deviations from the standard code as evidence against it. A recent paper published in the journal BIO-Complexity, by Winston Ewert, reviews the character and distribution of genetic code variants and the implications these have for common ancestry, and “develops a framework for understanding codes within a common design framework, based crucially on the premise that some genetic code variants are designed and others are the result of mutations to translation machinery.” Ewert explains that,

Upon first investigation, evolutionary theory appears to have a compelling account of the character and distribution of variant codes. Evolutionary theory suggests that if genetic code evolution is possible it should be very rare. This would explain why most genomes follow the standard code and why the exceptions only vary in a few codons. It would also explain the following details about the variant codes. Most variations are found in mitochondria, whose very small genomes would make code evolution easier. Many variations are also found in highly reduced genomes, such as those of endosymbiotic bacteria. No variations are found in the nuclear genomes of complex multicellular organisms like plants and animals. The distribution of many codes can be easily explained by identifying certain points on the tree of life where codons were reassigned and then inherited by all of their descendants.

EWERT W (2024) ON THE ORIGIN OF THE CODES: THE CHARACTER AND DISTRIBUTION OF VARIANT GENETIC CODES IS BETTER EXPLAINED BY COMMON DESIGN THAN EVOLUTIONARY THEORY. BIO-COMPLEXITY 2024 (1):1-25.

Three Tenets

The paper proposes “a framework that seeks to explain the character and distribution of variant genetic codes within a common design framework.” Ewert’s framework has three tenets: First, “the canonical genetic code has been well optimized and is thus an ideal choice for most genomes.” There are multiple optimized parameters and thus “A designer must identify the best trade-offs to select the ideal genetic code.” The second tenet of Ewert’s framework is that a minor variation on the standard code is better suited to some organisms, since those organisms may acquire an advantage by a different set of trade-offs with respect to genetic code optimization. The third tenet is that the translation machinery has been damaged by mutations in some organisms, and that this has resulted in their misinterpreting the code they were initially designed to employ. These are examples of genetic code variants that have evolved naturally.

Five Criteria

Ewert offers five criteria that may be used to distinguish genetic codes that are evolved from those that are designed. First, evolved codes are expected to be found in taxonomic groups below the family level, whereas those that are designed are predicted to be above the level of family. Second, evolved codes should be readily “explicable in terms of some simple mutation to the translation machinery of the cell.” Third, it is predicted that codes that are evolved will be limited to the genomes of endosymbionts. Fourth, it is expected that codes that are evolved utilize a small number of codons so that the variation does not cause the organism too much harm. Fifth, it is predicted that evolved codes will fall into a simple nested hierarchical (phylogenetic) distribution. By contrast, 

[D]esigned codons are found in high-level taxa of at least genus-level but typically higher. They involve many reassignments that are difficult to explain with any sort of simple mutation. They are found in free-living organisms. They sometimes reassign codons that are expected to be rare. They are often distributed in a complex fashion that does not fit phylogenetic expectations.

EWERT W (2024) ON THE ORIGIN OF THE CODES: THE CHARACTER AND DISTRIBUTION OF VARIANT GENETIC CODES IS BETTER EXPLAINED BY COMMON DESIGN THAN EVOLUTIONARY THEORY. BIO-COMPLEXITY 2024 (1):1-25.

It has been conventionally thought that evolution provides a good explanation for the character and distribution of genetic code variants — in particular, the near-universality of the standard code; the prevalence of variant codes in simple genomes such as those of mitochondria; and the phylogenetic distribution of variant codes. Ewert notes that, in light of evolutionary theory, it would in fact be expected that there would be variant codes found at the higher taxonomic levels, which would be consistent with the genetic code still being variable at the time of the last common ancestor. However, “What we observe instead are modifications of the standard code. They are not associated with the high-level taxa…” 

Furthermore, though we should expect on evolutionary theory that it would be exponentially harder to reassign a code as the number of genes increases, “variant codes are found in nuclear genomes that are not particularly small. They are found in ciliates, which have comparable numbers of genes to the human genome. Additionally, we find them in some multicellular green algae. In fact, we find more code variation in eukaryotic nuclear genomes than in bacterial genomes, despite eukaryotes having much larger genomes.” Thus, Ewert concludes, “despite the initial impression, evolutionary theory does not account well for the kinds of genomes with variant codes.”

Invoking “Inexplicable Events”

Finally, though evolutionary theory would predict that the distribution of variant codes would be consistent with the standard phylogeny, Ewert observes that, “In many cases, the distribution of a code is complex, defying evolutionary explanations. Codes recur in closely related groups in a way not explained by common descent. Evolutionary theory has to invoke inexplicable events such as reversions to the standard code.”

Thus, Ewert concludes, “Initially, evolutionary theory appeared to have some explanatory power. However, upon closer inspection, the features of the variant codes that seemed well explained by evolutionary theory turned out to either be inaccurate or to not follow from evolutionary theory.” Instead, he argues that the character and distribution of variant codes is often better explained under a framework of common design.

The paper is well worth a careful read. It can be accessed here.


Friday, 21 June 2024

Settled science is the real science stopper?

 

Thoughtful Darwinism to ID : lets be frenemies II

 Evolutionary Biologist Concedes Intelligent Design Is the Cutting Edge


Bret Weinstein and Heather Heying are well-known evolutionary biologists (and husband and wife) with a podcast, the DarkHorse Podcast. Recently Weinstein posed a provocative question, “Is intelligent design a competitor to Darwinian evolution?” His answer may surprise you: Yes.  

No, he’s not about to come over to the dark side. Weinstein is confident that Darwinism will meet the challenges that ID has set, about the Cambrian Explosion and more, but he concedes that it hasn’t done so yet.

He describes conversations with Richard Dawkins and Jerry Coyne, asking them why evolutionary biology hasn’t had a breakthrough since 1976 when Dawkins published The Selfish Gene. Dawkins and Coyne, separately, both answered that it was because all the big questions had already been answered, and all that was left was a “clean up” operation. Weinstein recognizes that that is just so much blowing smoke, and the work of Stephen Meyer and his “high-quality colleagues” in the ID research community has exposed the problems that Darwinists need to be working on to solve. 

Settled Science?

About Dr. Meyer, he says:
           I encountered people like Stephen Meyer, who were not phony scientists, pretending to do the work. They were actually very good at what they did. And I believe Stephen Meyer is motivated by a religious motivation, but we don’t generally ask the question when somebody takes up science, “What are you really in it for? Are you in it for the fame?” That’s not a legitimate challenge to somebody’s work. 

And the fact is, Stephen Meyer is very good at what he does. He may be motivated by the thought that at the end of the search he’s going to find Jesus. But in terms of the quality of his arguments, I was very impressed when I met him: his love for biology, his love for creatures, the weirder the better, he likes them, right? So that looked very familiar to me. 

No Mind Readers Here

In other words, motivation should be irrelevant. The quality of the science is what counts. I would add, none of us is a mind reader and we can never know what someone else’s motivation really is. In any event, says Weinstein, ID clearly is about science, not religion:

And it all also became obvious to me in interacting with Stephen Meyer and many of his high-quality colleagues that they’re actually motivated, for whatever reason, to do the job that we are supposed to be motivated to do inside of biology. They’re looking for cracks in the theory. Things that we haven’t yet explained. And they’re looking for those things for their own reasons, but the point is we’re supposed to be figuring out what parts of the stories we tell ourselves aren’t true, because that’s how we get smarter over time. 

Shrinking from a Fight 

Darwinists, say Weinstein, are shrinking from a fight they wrongly feel they shouldn’t have to bother with:

If you decide… that your challengers aren’t entitled to a hearing because they’re motivated by the wrong stuff, then you do two things. One, you artificially stunt the growth of your field, and you create a more vibrant realm where your competitors have a better field to play in because you’ve left a lot of holes in the theory ready to be identified, which I think is what’s going on. The better intelligent design folks are finding real questions raised by Darwinism, and the Darwinists, instead of answering those questions, [are] deciding it’s not worthy of their time. And that is it is putting us on a collision course.

“Giving Up Darwin”

Heying cites the 2019 public defection from Darwinism of Yale computer scientist David Gelernter, who pointed to Meyer’s writing as his primary reason for “Giving Up Darwin.” She admits she hasn’t kept up with the challenges from ID, but agrees that she should keep up, and that’s because challenges like those from ID can make the evolutionary establishment “smarter.” Ignoring the challenges makes the establishment dumber — stagnant and self-satisfied.

I’m not familiar with most of the arguments that are coming out of the intelligent design movement. It hasn’t felt like it was my obligation to be familiar with them. Perhaps what you’re arguing is it is our responsibility.

Weinstein, unlike Coyne or Dawkins, is up for talking and debating with ID proponents:

I’m open to that battle and I expect that if we pursue that question, what we’re going to find is, oh, there’s a layer of Darwinism we didn’t get and it’s going to turn out that the intelligent design folks are going to be wrong. But they will have played a very noble and important role in the process of us getting smarter. And look, I think Stephen Meyer at the end of the day, I don’t think he’s going to surrender to the idea that there’s no God at the end of this process. But if we find a layer of Darwinism that hasn’t been spotted, that answers his question, I think he’s going to be delighted with it the same way he’s delighted by the prospect of seeing whale sharks.

Again, these are remarkable concessions from a couple of scientists who are not at all looking to make the leap to ID, but who understand that intelligent design, not Darwinism, is currently at biology’s cutting edge.

The carbon atom vs. Darwin.

The Remarkable Carbon Atom


In an article yesterday, I discussed the incredible design of the nonmetal atoms, and the striking coincidence that the very atoms from which one can build stable, defined shapes also give us the hydrophobic force, which is the key to arranging them into higher-level structures. Here, I will discuss the fitness of carbon for life, and the incredibly fortuitous circumstances that promote its abundance in the universe.

The Fitness of Carbon for Life

The carbon atom, the primary constituent of organic molecules, is, in several respects, uniquely fit for the assembly of the complex macromolecules found in the cell. First, due to the stability of carbon-carbon bonding, only carbon can form long polymers of itself, forming long chains or rings, while also bonding to other kinds of atoms. Though silicon can also form long chains by bonding with itself, these bonds are significantly less stable than carbon-carbon bonds. Plaxco and Gross note that “while silicon-silicon, silicon-hydrogen, and silicon-nitrogen bonds are similar in energy, the silicon-oxygen bond is far more stable than any of the other three types. As a consequence, silicon readily oxidizes to silicon dioxide, limiting the chemistry available to this atom whenever oxygen is present. And oxygen is the third most common atom in the Universe.”1 As Primo Levi explains, carbon “is the only element that can bind itself in long stable chains without a great expense of energy, and for life on earth (the only one we know so far) precisely long chains are required. Therefore carbon is the key element of living substance.”2

Second, carbon is tetravalent — that is, each atom can form four covalent bonds with other atoms. Third, carbon possesses a relatively small atomic nucleus, entailing short bond distances, thereby allowing it to form stable bonds with itself as well as other atoms. This property is also possessed by the other small, non-metal atoms in period two. Carbon is able to form single, double, and triple bonds with other atoms. Nitrogen can also form single, double, or triple bonds and oxygen can form single and double bonds. Contrast this with the nonmetal atoms directly beneath them in the periodic table — silicon, phosphorus, and sulfur — which possess larger atomic radii and therefore form such bonds less easily due to multiple bonds having reduced stability. 

Another property of organic bonds is that their strength sits within a Goldilocks zone, being neither too strong nor too weak for biochemical manipulations in the cell. If the strength of those bonds were to be altered by a single order of magnitude, it would render impossible numerous biochemical reactions that take place in the cell. If it were too strong, the activation energy needed to break bonds could not be sufficiently reduced by enzymatic activity (enzymes strain chemical bonds by engaging in specific conformational movements while bound to a substrate). Conversely, if organic bonds were much weaker, bonds would be frequently disrupted by molecular collisions, rendering controlled chemistry impossible. 

Another special characteristic of carbon is that there is not much variation in energy levels of carbon bonds from one atom to the next. Robert E. D. Clark explains that carbon “is a friend of all. Its bond energies with hydrogen, chlorine, nitrogen, oxygen, or even another carbon differ little. No other atom is like it.”3 Kevin W. Plaxco and Michael Gross further comment, “Carbon presents a fairly level playing field in which nature can shuffle around carbon-carbon, carbon-nitrogen, and carbon-oxygen single and double bonds without playing too great a cost to convert any one of these into another… Given all this, it’s no wonder that on the order of ten million unique carbon compounds have been described by chemists, which is as many as all of the described non-carbon-containing compounds put together.”4

Carbon Resonance

As we have seen, carbon is absolutely fundamental to life. It also happens to be — after hydrogen, helium, and oxygen — the fourth most abundant element in our galaxy. A carbon nucleus can be generated by smashing together two nuclei of helium-4 to make beryllium-8 (containing four protons and four neutrons) and then adding a further nucleus of helium to generate carbon-12 (containing six protons and six neutrons). However, beryllium is quite unstable, and can be expected to break apart into two nuclei of helium in 10-16seconds. On occasion, prior to the breaking apart of beryllium, a third helium nucleus collides with beryllium, resulting in a carbon nucleus. As it happens, the carbon atom possesses a special quantum property called a resonance, which facilitates this process. A resonance describes the discrete energy levels at which protons and neutrons in the nucleus can exist. Indeed, it turns out that the resonance of the carbon atom just so happens to correspond to the combined energy of the beryllium atom and a colliding nucleus of helium.

As Geraint Lewis and Luke Barnes explain, “if there were a resonance at just the right place in carbon, the combined energy of the beryllium and helium nuclei would result in a carbon nucleus in one of its excited states. The excited carbon nucleus knows how to handle the excess energy without simply falling apart. It is less likely to disintegrate, and more likely to decay to the ground state with the emission of a gamma-ray photon. Carbon formed, energy released… success!”5 Without this specific resonance level, the universe would contain relatively few carbon atoms — in 1953, this specific resonance that had previously been predicted by Fred Hoyle was discovered by William Fowler, precisely where Hoyle had predicted it would be.

A Remarkable Coincidence

This special carbon resonance (known as the Hoyle state), which corresponds to the energy levels of the combined beryllium-8 nucleus and a helium-4 nucleus, renders the otherwise improbable process of carbon-12 formation feasible and efficient in the high-temperature environments of stellar cores. This delicate balance of energy levels is a remarkable aspect of nuclear astrophysics that allows for the creation of the elements necessary for life. If it were not for this special resonance, life very probably would not exist in our universe. This is another one of many countless features of our universe that have to be “just right” for life — in particular, advanced life — to exist.

Notes

Kevin W. Plaxco and Michael Gross. Astrobiology: A Brief Introduction, 2nd edition (The John Hopkins University Press, 2011), chapter 1.
Primo Levi, The Periodic Table (Abacus, 1990), 226-227.
Robert E.D. Clark, The Universe: Plan or Accident? 3rd edition, (Zondervan, 1972), 97.
Kevin W. Plaxco and Michael Gross. Astrobiology: A Brief Introduction, 2nd edition (The John Hopkins University Press, 2011), chapter 1.
Geraint F. Lewis and Luke A. Barnes, A Fortunate Universe: Life in a Finely Tuned Cosmos (Cambridge University Press, 2017), 116-117.

Tuesday, 6 June 2023

From contenders to counterparts?

 How Faith Can Improve Rigor and Creativity in Scientific Research


On a new episode of ID the Future, plant geneticist Richard Buggs speaks to the hosts of the Table Talk podcast about the long-standing claim that science and religion are at odds. Buggs is a professor and Senior Research Leader at Kew Royal Botanic Gardens, one of the UK’s largest plant science research institutes. He is also Professor of Evolutionary Genomics at Queen Mary University of London. Contrary to the prevailing view, Buggs says his Christian faith motivates his research, giving him the ability not only to think with different perspectives but also better understand the people groups stewarding natural resources around the world as well as more adequately explain certain processes he studies in nature. Buggs explains why the term “evolution” can vary between scientists and the public, and he reminds listeners of the current debate among evolutionary biologists themselves about the sufficiency of the current Darwinian mechanism to account for the origin and diversity of life. Along the way, Buggs points out the unconscious bias within his field that favors atheistic assumptions, noting that more cognitive diversity would improve the scientific landscape and bring more rigor and creativity to the scientific process. For their kind permission to post this informative exchange, we thank Table Talk hosts Jack Timpany and Graeme Johnstone. Download the podcast or listen to it Here.

Friday, 2 June 2023

And yet even more primeval tech vs. Darwin

 Natural Engineering in the Lifestyle of Honey Bees


A week ago, my wife came in and announced, “There’s a scary-looking bees’ nest in the lilac bush!” Wasps routinely try to build nests around our house, so I was prepared for the worst when I went out to investigate. What I found was a basketball-sized cluster of honey bees — a “swarm.” There was no nest, only a living ball of thousands of bees hanging from a branch. 

I’ve never done any beekeeping, but fortunately, we have some friends who do. We had no idea, but apparently a swarm of bees in May on an easily accessible branch is something to get excited about! Soon, our beekeeper friends rolled up in their pickup truck. One pulled on jacket and bee-proof bonnet, set a large container (a portable hive box) on top of a stepladder underneath the swarm, took hold of the branch, and shook it. The swarm of bees, all festooned together, fell in a clump into the box. Or, rather, most of them did. Hundreds of them draped over the sides, which our undaunted friend scooped into the box (with gloved hands), while hundreds more buzzed around. The couple who came kept reassuring us, “They’re not going to sting because they’re focused on staying with the queen.” I learned that the queen bee’s presence is of utmost importance for the thousands of others.

Thanks for the Bees

Our friends extended thanks for the bees, then went home, while we went inside for a belated supper. The next day, I saw a smaller swarm around a branch in the same lilac bush. Here’s the interesting thing. Our friends said that they didn’t think they had captured the queen since the bees were acting agitated, so they came right back over to recover the remaining small swarm. When they added it to the hive with the bulk of the bees, all of them settled down right away. The queen had come home.

Here was a fascinating example of a finely tuned aspect of living organisms that was surely worth further investigation. A trip to the university library and online research quickly yielded multiple sources of information about honey bees from specialists of all types. As I’ve read up on bee behavior and their life cycles, a striking picture appears of ingenious design in living systems.

Natural Engineering

A recent research article reported on the use of x-ray microscopy to provide three-dimensional, time-resolved details on how bees manufacture their iconic honeycomb structure. Several observations from the authors are worth mentioning:1

Honeycomb is one of nature’s best engineered structures.

Engineers recognize design, and never has good human-level engineering come about by anything other than intelligent design.

Honeycomb is a structure that has both fascinated and inspired humans for millennia, including serving as inspiration for many engineering structures. It is a multifunctional structure that acts as a store for food, a nursery for developing honey bee brood, and a physical structure upon which honey bees live. It is constructed of wax produced by bees in specialized glands in their abdomen. Wax is an expensive commodity and so comb construction can be quite costly for a honey bee colony. Honeycomb is constructed in such a way to minimize wax consumption.

Honeycomb construction is optimized to serve multiple purposes for the bee colony, subject to the constraint of material and labor costs. Sounds like the bees are a responsible engineering firm.

The ability of bees to “know” how to manufacture the structurally optimal hexagonal-packed honeycomb is even more amazing when one considers that the worker bees constructing it hatched less than three weeks earlier.

While not a perfect analogy, a colony of bees may be compared to a multicellular living organism. Each member of the colony seems to know what to do at each stage of its life for the good of the whole “organism.” An isolated bee will soon die, even if supplied with nutrients, suggesting that it is designed to function as part of the whole. 

Arranged by a Designer

We could say that the whole honey bee colony is greater than just the sum of its individual members. This state of affairs usually arises when the individual components of a complex system are specifically arranged by a designer to accomplish a predetermined purpose. Consider any complex electrical or mechanical device. All of the components of my laptop would make a fascinating pile if laid out on a table; but they’re even more fascinating when assembled and functioning together as a whole, according to their designed purpose.

A professor of entomology at Iowa State University, studying the behavior of honey bee colonies, writes:

Each bee appears to specialize, for a time at least, on a particular job. Thinking about this, you may decide that a single bee is somewhat like a single cell of your own body. The work force in charge of a particular job, such as feeding larvae, would then correspond to one of your tissues. And if you follow this analogy further, you may conclude that a colony of honey bees is like an organism — a superorganism.2

Aspects of an organism that manifest in a honey bee colony include caring for developing larvae, securing and processing nutrients (similar to metabolism), tending the queen (whose presence coordinates the behavior of the entire colony), guarding the hive and patrolling for intruders (similar to an immune system), temperature regulation (fanning their wings to cool the hive, clustering and vibrating their wings to heat the cluster of bees), growth of the whole colony in terms of the number of individual bees, reproduction of the “organism” (resulting in the phenomenon of the honey bee swarm), coordination of activities mediated by a variety of communication channels, and a sense of purpose.

Observers of complex, functional systems, whether nonliving or alive, rationally conclude that, “If something works, it’s not happening by accident.”3

Beyond Mere Survival

The honey bee colony “works” and accomplishes a purpose beyond mere survival. It diligently stockpiles nectar which its workers convert to honey in amounts exceeding its needs.4 Honey’s unique ingredients give it value as a food source for humans that has been recognized for millennia.

The high total sugar concentration [primarily fructose and glucose, with a smaller amount of sucrose] in honey is beneficial in that most yeasts cannot ferment in it. Also, together with one other constituent (glucose oxidase), it gives the honey antimicrobial properties, and it can be stored safe from spoilage…5

Beyond the direct production of honey for our use, the role of honeybees as pollinators is of critical importance in agriculture:

Bees and other pollinators play a critical role in our food production system. More than 100 U.S. grown crops rely on pollinators. The added revenue to crop production from pollinators is valued at $18 billion.6

Continuing to ponder bee behavior, comments made by Professor Richard Trump of Iowa State University are instructive:

If a honey bee, with her microbrain, knows what she is doing, this is cause for wonder. If she does not know — if she is fully programmed by those sub-microchips of DNA that come to her as a legacy from her ancestors — this is even greater cause for wonder. It is incredible.7

Here are a couple of examples that may cause us to wonder how bees know how to do what they do. Researchers have found that bees possess an internal organic timer, which in conjunction with an awareness of the rotation of the Earth, allows them to efficiently time their foraging activities to arrive at flowers when pollen sources are at their peak. 

The famous “waggle dance” that a scout bee performs back at the hive after discovering a food source communicates to other bees (by touching, since the inside of the hive is dark) both the distance and the direction of the food in relation to the current position of the sun. Bee keepers have found that if they reorient the honeycomb on which the bee is dancing, the undaunted bee will adapt its dance so that it still correctly communicates the proper direction to the food source.8 Sometimes the dancing scout bee will continue its dance for more than an hour, and over this time, the position of the sun has changed. In response, the bee will compensate for the sun’s movement across the sky by gradually adjusting the angle of its dance.

How Many Lines of Code?

If humans tried to duplicate the capabilities of honey bees by building and programming mini-robots that could fly, how many lines of code would have to be written and executed to make an artificial bee? We can also ask what the likelihood is of all this coded information arising from unguided natural processes. Someone committed to the evolutionary paradigm might answer that any genomic changes that offered a survival advantage would’ve been locked in by the ratchet-like mechanism of natural selection until primitive bee ancestors evolved into the complex, coordinated colonies of honey bees seen today.

Systems engineer Steve Laufmann, co-author of the recent book Your Designed Body, addresses the engineering hurdles facing any proposed evolutionary explanation:

…when evolutionary biologists hypothesize about small and apparently straightforward changes to a species during its evolutionary history, the biologists tend to skip both the thorny engineering details of what’s necessary to make the system work, and the bigger picture of how any system change has to be integrated with all the other systems it interacts with. The result is that biologists tend to massively underestimate the complexities involved.

And here’s the rub: if they’ve massively underestimated those complexities, then they’ve massively underestimated the challenge for any gradual, materialistic evolutionary process to build up these systems a little bit at a time while maintaining coherence and function. 

PP. 324-325

The difficulties outlined by Laufmann are in the context of the human body, but they apply equally well to the complexities of a colony of honey bees. Bee keepers are all too aware of the precarious balance between life and death throughout a single year for a colony of bees. Engineers know that making changes to a delicately balanced complex functional system, even small ones, have a way of upsetting the balance — not towards better function but towards failure and collapse.

Honey bees offer us a glimpse of a remarkable living system involving interdependent, communally cooperative behavior. In some ways, they outshine the best in conscious human attempts to build a thriving society. Perhaps we can learn a thing or two from the humble bee.

Notes

Rahul Franklin, Sridhar Niverty, Brock A. Harpur, Nikhilesh Chawla, “Unraveling the Mechanisms of the Apis mellifera Honeycomb Construction by 4D X-ray Microscopy,” Advanced Materials, Vol. 34, Issue 42, Oct. 20, 2022.
Richard F. Trump, Bees and Their Keepers, (Iowa State University Press, Ames, IA, 1987).
https://evolutionnews.org/2021/12/caltech-finds-amazing-role-for-noncoding-dna/
How do bees make honey? From the hive to the pot | Live Science (accessed 5/28/2023).
Diana Sammataro and Alphonse Avitabile, Beekeeper’s Handbook, (New York: Cornell University Press, 1998). 
pollinator_week_factsheet_06.25.2020 (usda.gov).
Trump, Bees and Their Keepers, p. 78.
Trump, Bees and Their Keepers, pp. 80-1. 

Thursday, 25 May 2023

"Professor"Dave =most clueless of all Q.E.D?

 Hello, Professor Dave: James Tour’s Criticisms of OOL Research Echo Those of Other Experts


In several articles we have already deconstructed the debate between Professor James Tour and “Professor” Dave Farina on the state of research about the origin of life (OOL). For example, see my latest, on Farina’s habit of citation bluffing, here. Today, I will address one of the few honest questions Farina and other critics have asked: If Tour’s critique of the field is accurate, why has he not published his arguments in peer-reviewed literature? The answer is simple: Tour’s criticisms and concerns have already been recognized by experts in origins research and published in technical journals. Tour has simply compiled and explained the challenges to the public to expose the disconnect between what the public has been told and the true state of the field. 

Steven Benner

One of the most comprehensive and insightful critiques of origins research is by Steven Benner (2009), a synthetic chemist praised by Farina. Benner’s article “Paradoxes in the Origin of Life” lists five seemingly insurmountable hurdles facing origin-of-life scenarios. I will explain only two. 

The first is termed the Asphalt Paradox. It refers to the tendency of systems of organic molecules to degrade into mixtures of molecules that are useless for life. Benner states:

An enormous amount of empirical data have established, as a rule, that organic systems, given energy and left to themselves, devolve to give uselessly complex mixtures, “asphalts”… Further, chemical theories, including the second law of thermodynamics, bonding theory that describes the “space” accessible to sets of atoms, and structure theory requiring that replication systems occupy only tiny fractions of that space, suggest that it is impossible for any non-living chemical system to escape devolution to enter into the Darwinian world of the “living.”

Benner goes on to explain why this tendency undermines all potentially viable approaches to explaining even the simplest and earliest steps toward life’s origin:

Such statements of impossibility apply even to macromolecules not assumed to be necessary for RIRI [replication involving replicable imperfections] evolution. Again richly supported by empirical observation, material escapes from known metabolic cycles that might be viewed as models for a “metabolism first” origin of life, making such cycles short-lived. Lipids that provide tidy compartments under the close supervision of a graduate student (supporting a protocell-first model for origins) are quite non-robust with respect to small environmental perturbations, such as a change in the salt concentration, the introduction of organic solvents, or a change in temperature….

Benner labels a second challenge the Information-Need Paradox. It refers to the implausibility of an RNA molecule forming with the information required for it to self-replicate. The central problem is that the probability is miniscule for a random sequence of nucleotides (the building blocks of RNA) to contain the required information for an RNA molecule to perform self-replication or any other complex function required for a minimally complex cell. Benner states:

If a biopolymer is assumed to be necessary for RIRI evolution, we must resolve the paradox arising because implausibly high concentrations of building blocks generate biopolymers having inadequate amounts of information. These propositions from theory and observation also force the conclusion that the emergence of (in this case, biopolymer-based) life is impossible.

At the end of the article, Benner exchanges the hat of an objective scientist for that of a high priest of the secular faith. He encourages his readers not to lose hope that the paradoxes will one day be solved. Yet no discovery since the article’s publication has suggested that the barriers to life’s genesis identified by Benner could ever be overcome.     

Tour’s critique appears far more charitable than Benner’s assessment. Tour simply stated that researchers do not yet have any understanding of how life could have originated. In contrast, Benner stated that the most fundamental theories of science and all experimental evidence point to the origin of life through natural processes being “impossible.”

Elbert Branscomb and Michael Russell

A second key paper is “Frankenstein or a Submarine Alkaline Vent: Who Is Responsible for Abiogenesis?” This two-part article (Part 1, Part 2) was authored by Elbert Branscomb and Michael Russell (2018), who are leaders in the alkaline-vent hypothesis for the origin of life. The article explains why all theories on life’s origin relying solely on natural processes must fail. The authors detail how nearly every reaction in cells requires molecular machines to drive it at the correct rate:

But even those of life’s molecular transformations that do run downhill have to be taken out of chemistry’s hands and “managed” by a dedicated macromolecular machine — in order to impose conditionally manipulable control over reaction rates and to exclude undesirable reactions, both as to reactants and products. On its own, chemistry is far too indiscriminate and uncontrollable.

The authors also state that the operations of a cell must conform to “an elaborate organizational design.” 

Life does not represent an emergent property of matter, but a system of processes directed by advanced nanotechnology to operate in conformity with a blueprint or design architecture. One could no more explain the organization of a cell through the chemistry and physics of its constituent molecules than one could explain the organization of a car through the chemistry and physics of metal, glass, rubber, and gasoline. 

Remarkably, the authors even recognize that the need for molecular machines eliminates any possibility of Life emerging through natural processes:

We claim in particular that it is untenable to hold that life-relevant biochemistry could have emerged in the chemical chaos produced by mass-action chemistry and chemically nonspecific “energy” inputs, and only later have evolved its dauntingly specific mechanisms (as a part of evolving all the rest of life’s features).

They respond to this challenge by appealing to natural selection. Yet nothing is reproducing, so their only hope for explaining life is a delusion. Here again, the authors present a bleak picture of the field by concluding that life’s origin appears “untenable.”

Assembling the Cellular Components

Ironically, explaining the synthesis of life’s building blocks (e.g., proteins, RNA, membranes, sugars) is far easier than explaining how they could assemble into a functional cell. What would happen if aliens deposited millions of tons of randomly sequenced proteins and RNA, cell membranes, molecular machines, and every other cellular component on the early Earth? Everything would simply decompose into “uselessly complex mixtures.” Even if decomposition were somehow prevented, forming a minimally complex cell would still require three steps: 

Selecting the correct proteins, RNA, and other structures out of an unfathomably large pool of molecules. 
Localizing the building blocks in a microscopic environment. 
Properly assembling the molecules and structures into a fantastically rare arrangement.
Tour explained the complete implausibility of these steps through known natural processes in a video, which I summarized in a previous Article

Irrelevant Research on Life’s Origin

Examining the assembly problem reveals the irrelevance of current origin-of-life research. Origins experiments and hypotheses represent mere nibbling around the edges of the real challenge, for reasons that can best be understood with an analogy. Imagine a group of scientists claiming that the laws of aerodynamics guarantee that a tornado plowing through an auto parts store will often assemble the parts into a functional car. To prove their point, they attempt to demonstrate that high winds under the right conditions can push nuts and bolts closer together. Even if successful, this one step is inconsequential in relation to the entire task of car assembly. 

Similarly, simply forming a few biologically relevant molecules or linking them together is inconsequential when compared to fabricating a cell, which represents a nanotechnology vessel capable of such feats as energy production, information processing, and error correction. Any honest assessment of the evidence must conclude that life did not originate through natural processes, but instead is the product of a mind.

Thursday, 13 April 2023

Yet more on when the thumb print of JEHOVAH is the logical conclusion.

 <iframe width="460" height="259" src="https://www.youtube.com/embed/1ZvrwDtg7rQ" title="Stephen Meyer: Return of the GOD Hypothesis!" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>

Wednesday, 29 March 2023

Copying the original engineer?

 Engineering Brings Life and Vice Versa


I came across an uplifting video about a life-saving invention that encapsulates several running themes about intelligent design. If you can, take 22 minutes to watch this video by Mark Rober, a former NASA engineer. I assure you it will be well worth your time.

<iframe width="460" height="259" src="https://www.youtube.com/embed/DOWDNBu9DkU" title="Amazing Invention- This Drone Will Change Everything" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>

The story is uplifting on many levels. How wonderful is it to see former enemies from a major genocide in 1994 having learned how to live together in peace 30 years later? How inspiring is it to see one near victim of that slaughter starting in poverty to become a Harvard engineer and inventor in a company that is saving lives? How beautiful is it to see smiling children mastering soccer with a makeshift ball? How gratifying to prove naysayers wrong, and to show the fruit of well-tested engineering being put to beneficial use in the poorest parts of the world? I was very impressed by this story.

There was one brief statement I will criticize, but otherwise this video made my day, especially since I have relatives in Africa on a medical mission who may soon benefit from this amazing technology. Whether or not you like drones or believe this type of delivery system will change shopping in America (I can see lawyers rubbing their hands), the way the invention is working in Africa right now cannot help but impress. This is the power of ethical intelligent design in action. Let’s look at some lessons from this story.
           
Biomimetics

The heroes of the story are the birds. They were already masters of takeoff, landing, and pinpoint navigation. An owl was the inspiration for the Zipline drone’s whisper-quiet propeller system. A hummingbird inspired their miniaturized and silent flight control. As I like to say, if the engineers can get their drones to lay eggs and hatch babies with the software and hardware already included, that can grow larger while maintaining function, and power themselves from the environment by ingesting worms, they will really have something to brag about. Bravo to the birds that once again inspired inventors from the Wright Brothers to the high-tech engineers of NASA and Zipline.
                    
Trial and Error with Thinking
                 As Rober shows, Abdul and his crew had to try and fail many times. They succeeded through the failures and made progress because they applied their minds to problem solving. By thinking, and learning the principles of how things work, elucidated by great minds of the past, they could bring parts together to achieve a goal that first existed only in the mind’s eye. They could envision a concept, experiment, and test possibilities, making progress toward the goal by learning from their failures. 

Darwinians tell us that is how natural selection works, but think about it. (In passing, note that thinking also requires a mind.) If nature is mindless and aimless, with no foresight, could it invent a Zipline delivery system, much less a bird as they claim happened? A fundamental ID principle first clearly enunciated by Michael Behe is that irreducibly complex systems defeat the Darwinian mechanism and give positive evidence for intelligent design. We see that in this story implicitly.

Altruistic Design

Another thing the Darwinians continue to teach (examples here and here) is that altruism evolved by natural selection. Indeed, they attribute every noble ideal in human society to this blind, aimless, purposeless “mechanism” that works in bacteria similarly to how (they say) it works in human societies. With their evolutionary game theory models, they divide up members of a population into cooperators and cheaters whose actions are genetically determined by the mechanism, not by morality or by human exceptionalism. But doesn’t this quote from the video knock the air out of that explanation? Rober shows battle scars from the Rwandan genocide, then says,
                 As horrific as that ways, it galvanized the country to a period of healing and solidarity as a single Rwandan people instead of divisive ethnic groups. For instance, on the last Saturday of the month, literally everyone spends the day picking up trash and volunteering in their local communities. And that’s one of the reasons you hardly see litter anywhere…. There was just a pervasive optimism everywhere. Everyone was moving with a purpose everywhere we went, not just working hard, but working smart with the resources on hand…

For over a decade, attending school up to age 16 has been both mandatory and free. And when you combine that with leapfrogging to new technologies like drone delivery, in the last decade their economy has been growing at four times the rate of the U.S. economy, while their violent crime rate has been 15 times less than the U.S.
                         Who can say with a straight face that these Rwandan people, recovering from a devastating civil war, are just pawns of evolutionary game theory? Who can say that Abdul, after his near escape from terror that took his family, is no better than a germ cooperating with other bacteria? To even suggest such a notion is to defeat it. That word purpose stands out as anti-Darwinian as anything in the whole video. 

This calls for an occasion to promote the new Book Darwin Comes to Africa by Olufemi Oluniyi, who recounts the abominations wrought by the European imperialists who were mostly ardent believers in Social Darwinism. Would Darwinists today draw no distinctions between the altruistic, cooperative black Africans of Rwanda, whose behavior serves as a model for Westerners, than the colony of gorillas Mark Rober visited next in the video? Perish the racist thought. Westerners could learn some lessons from the morals of these friendly people who turned evil into good, and from Abdul whose noble soul did not take the evolutionary route of retaliation for his own personal fitness but instead is today saving the lives of distant people he hasn’t even met.
              
Teaching Design
             Rober bypasses academia at one point. He shares his vision of getting children to build things and learn by doing, realizing that “thinking like an engineer” means breaking things to figure out what works and what doesn’t. How many of the happy children he shows trying to solve simple problems, like getting a ping pong ball to bounce into a boot, will be likely to end up Darwinists? The harder the problem, the more the student will learn that things don’t just happen. Teaching engineering at an early age may prove to be the antidote to Darwinism for the next generation
          
The Flaw

OK, so what is the lone criticism I have of the video? It’s a throwaway line when Rober claims that “with owls, there’s an evolutionary pressure to be as quiet as possible” as he shows an owl flying imperceptibly past a line of microphones. What can possibly be meant by “evolutionary pressure”? The Darwinist imagines that adaptations are caused by an organism’s surroundings. The Darwinist believes that innovations that are engineering marvels, like powered flight, can emerge this way. For those who maintain that environments have such power, consider a simple illustration. The desert pupfish in Nevada have faced environmental pressure from increasing salinity as their habitats dry up, and now survive high salt concentrations that would kill other fish. Isn’t that “evolutionary pressure” forcing them to adapt? There are several problems with this explanation. 

For one thing, a chance mutation that helps a lone pupfish survive increasing salt is not going to aid the individual, but only its offspring. Standard neo-Darwinism teaches that the beneficial mutation needs to occur in the germline, not in somatic cells. Even if epigenetic benefits can be inherited, as has been shown more recently, they cannot happen gradually by random mutations, but involve rewiring of complex genetic circuits. Second, the neo-Darwinian explanation transfers the cause of adaptation to the environment instead of locating it in the organism. This borders on vitalism or personification, as if the environment is pressuring the organism in certain adaptive directions. The environment is mindless; it cannot care what happens. Extinction is a perfectly valid option, as the fossil record shows. Third and most important, the pupfish can only adapt if there is built-in engineering for adaptation prior to need. This presupposes an ability to sense the change, reprogram itself, and alter its own responses. Intelligent design for robustness in changing environments matches what engineers do when they build in redundancy and fail-safe mechanisms, as shown in the video. The owl that flies silently was not “pressured” by “evolution” to adapt its wing feathers. The cause of the adaptation was internal to the owl. That required foresight, not a randomly changing environment. 

Enough on that minor flaw in the video. Everything else was spectacularly encouraging for ID advocates. By the way, signups are being taken for the next CELS event (Conference on Engineering in Living Systems) in Texas this June 3-10. Read about it here.
                    
The Uplift
                    For an upbeat summary, Rober’s ending comment bears repeating.
                   Here you have Abdul, who bears a scar on his head from the same machete that killed his entire family as a child, not only using his engineering knowledge to save the lives of his people, but more importantly, to inspire the next generation of problem solvers to dream even bigger. It’s the type of thing that leaves you feeling a little bit of that contagious Rwandan optimism for the future and the incredible potential of us mere humans.
                            Human exceptionalism is real; it is part of our own experience and of human history. We thrive best when using our minds and morals unselfishly to solve problems for the improvement of our world.