Search This Blog

Sunday, 16 October 2016

Darwinism can't win even with loaded dice.

Researchers Ran a Massive Yearlong Experiment to Get Bacteria to Evolve. Guess What Happened?

 was caused by the occasional sudden recovery of populations whose densities had initially declined markedly, a phenomenon known as the "Lazarus effect".
So how is Lazarus coming out of the grave? They don't know. Maybe there is some "preadaptation" to heat in these bacteria:
At the upper end of the thermal niche, most (>95%) of the clones persist at 45 °C, signaling an expansion of their niche at least 2 °C beyond that of the ancestor (Fig. 1B). This observation contrasts with a previous study in which only one of six 42 °C-adapted lines expanded their upper thermal limit but suggests a degree of "preadaptation" to temperatures beyond the clones' immediate experience. Above 45 °C the analyses become complicated by the Lazarus effect, in whichdeclining populations suddenly recover, presumably due to major effect mutations. Indeed, the ancestral clone, which is habituated to laboratory conditions of 37 °C, does not persist at 43 °C but often recovers at 45 °C (Fig. S2). We do not yet know the molecular processes underlying the Lazarus effect, but two seem possible: either the fitness effects of mutations change as a function of the intensity of stress or the mutation rate increases under high stress (33, 34). We do not yet know which of these two mechanisms predominates.
Complicating matters even more are things like "negative epistasis" (mutations that counteract each other) and "antagonistic pleiotropy" (unintended consequences of a "beneficial" mutation on other parts of the genome).
In short, it was hard to find anything beyond a "suggestion" or a "scenario" that these bacteria improved their fitness in any way by genetic mutations, other than the gross observation that some of the clones managed to survive at 45 °C. But even the ancestor could do that sometimes through the "Lazarus effect." The authors also ignored the possibility that E. coli have ways to generate their own mutations under stress. That would be supportive of intelligent design, as would the notion that bacteria contain "a degree of preadaptation" to temperatures beyond their immediate experience.
Some experiment. What we learn from this paper is that under ideal conditions, with the best methods, scientists have a devil of a time trying to establish neo-Darwinian theory in a scientifically rigorous way. A look at their references shows a debt to Lenski's methods that similarly produced paltry results on one of the longest-running experiments in history trying to demonstrate evolution in a lab.
Is this a theory that deserves to rule the world?

No comments:

Post a Comment