Search This Blog

Saturday 24 December 2022

File under"well said," LXXXVIII

 But what is liberty without wisdom, and without virtue? It is the greatest of all possible evils; for it is folly, vice, and madness, without tuition or restraint. 

Edmund Burke 

Darwinism's failure as a predictive model XXI

 Darwinism's predictions 

Cornelius G Hunter 

Genes hold information that is used to construct protein and RNA molecules which do various tasks in the cell. A gene is copied in a process known as transcription. In the case of a protein-coding gene the transcript is edited and converted into a protein in a process known as translation. All of this is guided by elaborate regulatory processes that occur before, during and after this sequence of transcription, editing and translation.
 
For instance, some of our DNA which was thought to be of little use actually has a key regulatory role. This DNA is transcribed into strands of about 20 nucleotides, known as microRNA. These short snippets bind and interfere with RNA transcripts—copies of DNA genes—when the production of the gene needs to be slowed.
 
MicroRNAs can also help to modify the translation process by stimulating programmed ribosomal frameshifting. Two microRNAs attach to the RNA transcript resulting in a pseudoknot, or triplex, RNA structure form which causes the reading frameshift to occur. (Belew)
 
MicroRNAs do not only come from a cell’s DNA. MicroRNAs can also be imported from nearby cells, thus allowing cells to communicate and influence each other. This helps to explain how cells can differentiate in a growing embryo according to their position within the embryo. (Carlsbecker)
 
MicroRNAs can also come from the food we eat. In other words, food not only contains carbohydrates, proteins, fat, minerals, vitamins and so forth, it also contains information—in the form of these regulatory snippets of microRNA—which regulate our gene production. (Zhang) 
While microRNAs regulate the production of proteins, the microRNAs themselves also need to be regulated. So there is a network of proteins that tightly control microRNA production as well as their removal. “Just the sheer existence of these exotic regulators,” explained one scientist, “suggests that our understanding about the most basic things—such as how a cell turns on and off—is incredibly naïve.” (Hayden)
 
Two basic predictions that evolutionary theory makes regarding microRNAs are that (i) like all of biology, they arose gradually via randomly occurring biological variation (such as mutations) and (ii) as a consequence of this evolutionary origin, microRNAs should approximately form evolution’s common descent pattern. Today’s science has falsified both of these predictions.
 
MicroRNAs are unlikely to have gradually evolved via random mutations, for too many mutations are required. Without the prior existence of genes and the protein synthesis process microRNAs would be useless. And without the prior existence of their regulatory processes, microRNAs would wreak havoc.
 
Given the failure of the first prediction, it is not surprising that the second prediction has also failed. The microRNA genetic sequences do not fall into the expected common descent pattern. That is, when compared across different species, microRNAs do not align with the evolutionary tree. As one scientist explained, “I've looked at thousands of microRNA genes and I can't find a single example that would support the traditional [evolutionary] tree.” (Dolgin)
 
While there remain questions about these new phylogenetic data, “What we know at this stage,” explained another evolutionist, “is that we do have a very serious incongruence.” In other words, different types of data report very different evolutionary trees. The conflict is much greater than normal statistical variations. 
“There have to be,” added another evolutionist, “other explanations.” One explanation is that microRNAs evolve in some unexpected way. Another is that the traditional evolutionary tree is all wrong. Or evolutionists may consider other explanations. But in any case, microRNAs are yet another example of evidence that does not fit evolutionary expectations. Once again, the theory will need to be modified in complex ways to fit the new findings.
 
In the meantime, scientists are finding that imposing the common descent pattern, where microRNAs must be conserved across species, is hampering scientific research:
 
These results highlight the limitations that can result from imposing the requirement that miRNAs be conserved across organisms. Such requirements will in turn result in our missing bona fide organism-specific miRNAs and could perhaps explain why many of these novel miRNAs have not been previously identified. (Londin)
 
Evolutionary theory has been limiting the science. While the common descent pattern has been the guide since the initial microRNA studies, these researchers “liberated” themselves from that constraint, and this is leading to good scientific progress: 
In the early days of the miRNA field, there was an emphasis on identifying miRNAs that are conserved across organisms … Nonetheless, species-specific miRNAs have also been described and characterized as have been miRNAs that are present only in one or a few species of the same genus. Therefore, enforcing an organism-conservation requirement during miRNA searches is bound to limit the number of potential miRNAs that can be discovered, leaving organism- and lineage-specific miRNAs undiscovered. In our effort to further characterize the human miRNA repertoire, we liberated ourselves from the conservation requirement … These findings strongly suggest the possibility of a wide-ranging species-specific miRNA-ome that has yet to be characterized. (Londin)
 
The two microRNA predictions have been falsified and, not surprisingly, the evolutionary assumption has hampered the scientific research of how microRNAs work. 

References 


Belew, Ashton T., et. al. 2014. “Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway.” Nature 512:265-9.
 
Carlsbecker, Annelie, et. al. 2010. “Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate.” Nature 465:316-21.
 
Dolgin, Elie. 2012. “Phylogeny: Rewriting evolution.” Nature 486:460-2.
 
Hayden, Erika Check. 2010. “Human genome at ten: Life is complicated.” Nature 464:664-7.
 
Londin, Eric, et. al. 2015. “Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs.” Proc Natl Acad Sci USA 112:E1106-15.
Zhang, L., et. al. 2012. “Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA.” Cell Research 22:107-26. 

Friday 23 December 2022

The latest on the fossil record's fossil recording.

Fossil Friday: Miocene Aardvarks and the Abrupt Origin of Tubulidentata 

 Günter Bechly 

This Fossil Friday we continue our series on the origins of placental mammal orders with the aardvark order Tubulidentata. Aardvarks are a strange group of insectivorous mammals with a single living relic species Orycteropus afer, which is endemic to subsaharan Africa and exclusively feeds on ants and termites. The order is named after the characteristic tube-shaped teeth that lack enamel. Aardvarks are often considered to be living fossils (Bennett 2017, Shoshani 2021, Anonymous 2022). So, what about their actual fossil history? Including the living species there were 5 genera and 17 valid species described in the order Tubulidentata (Lehmann 2009, Pickford 2019), but generally their fossil record is comparatively sparse until this day (Koufos 2022). 

Miocene to Pleistocene 

Fossil aardvark species have been described from the Miocene to Pleistocene of Africa, southern Europe, and South Asia (Patterson 1975, Lehmann 2006, 2009, Asher & Seiffert 2010). Until recently the oldest undisputed fossil aardvarks were the two species Orycteropus minutus and Myorycteropus africanus from Lower Miocene deposits in Kenya (MacInnes 1956, Patterson 1975, Pickford 1975, Lehmann 2006), which were dated to an age of 19.6 mya and 17.8 mya respectively (Lehmann 2007). Slightly older undescribed remains were mentioned by Pickford & Andrews (1981). Pickford (2019) described the new fossil aardvark genus Eteketoni from the Lower Miocene of Uganda, which may be closely related to Myorycteropus and now rivals Orycteropus afrianus as oldest fossil record of the order with an estimated age of 20-18.5 mya.

McKenna & Bell (1997) mentioned the two genera Archaeorycteropus and Palaeorycteropus from the Oligocene of Quercy in France (ca. 34 mya) as questionable tubulidentates, which would qualify as oldest fossil record of the order. Pickford (1975) had at least Palaeorycteropus listed as fossil Tubulidentata, and Shoshani (2001) also accepted this genus as Oligocene record of Tubulidentata. However, several earlier works had already strongly disputed that either of these two genera is a tubulidentate at all (Simpson 1931, Thenius & Hofer 1960, Patterson 1975, Thewissen 1985). Lehmann (2007, 2009) agreed that both genera are Eutheria of uncertain relationship. Therefore, Asher & Seiffert (2010) excluded both from their phylogenetic tree of Afrotheria. 
Leptomanis edwardsi is another enigmatic fossil mammal from the Oligocene of Quercy, and was mostly regarded as a putative relative of pangolins. Simpson (1931) thought that it is “possibly an orycteropodid” but put this with a question mark. Thewissen (1985) re-described the material of Leptomanis and concluded that “the best option for Leptomanis seems to be that it is the oldest tubulidentate so far known.” Others remained unconvinced and considered Leptomanis to be of uncertain affinities (Patterson 1975, 1978, Lehmann 2007, 2009). Gaudin et al. (2009) listed Leptomanis as a synonym of Necromanis within the order Pholidota, thus as a fossil pangolin. Finally, Crochet et al. (2015) disputed the synonymy with Necromanis but affirmed the position in Pholidota.

It has been suggested by some experts that an extinct order of carnivorous African mammals called Ptolemaiida might be related to aardvarks (Simons & Gingerich 1974, Nishihara et al. 2005, Cote et al. 2007, Seiffert 2007). The most primitive but not the oldest member of Ptolemaiida is the enigmatic species Kelba quadeemae from the Early Miocene of East Africa about 18.3 mya (Savage 1965, Cote et al. 2007). The oldest fossil record of Ptolemaiida is material from the latest Eocene of Fayum in Egypt (Simons & Bown 1995), which therefore could also be the oldest putative stem group representatives of Tubulidentata. However, this relationship is far from established. 

The Eocene 

genera Herodotius and Chambius, which were previously considered as stem macroscelideans, never clustered with Macroscelidea but were recovered as sister group of aardvarks in some of the trees by Seiffert (2007), which would put the oldest fossil record of tubulidentate lineage into the Eocene as well. However, this result was unstable and in some other trees of the same author these herodotiine genera rather clustered with pseudoungulates, paenungulates, or hyraxes. 

A Real Conundrum 

So, we are left with a real conundrum for Darwinists. On the one hand, Shoshani (2001) concluded about Tubulidentata: 

Little evolution has taken place in the genus over almost 20 million years, this is a hallmark of living fossils … , in all probability, the origin of tubulidentate taxa might date to the beginning of the Cenozoic era (Palaeocene epoch, about 65 Ma), and perhaps earlier (in the Cretaceous epoch of the Mesozoic era, some 70 Ma). 

On the other hand aardvarks and their fossil relatives only appear much later in the fossil record of the Miocene less than 20 million years ago. Indeed, they represent the youngest of the placental mammal orders and one of the very few exceptions that are not first recorded in a narrow window of time in the Paleocene/Eocene (also see Asher & Seiffert 2010: fig. 46.1).

It is also interesting to note that aardvarks were long believed to be closely related to the Xenarthra and Pholidota (pangolins) within a hypothetical group Edentata. Rare dissenters like Le Gros Clark & Sonntag (1926) were vindicated by modern phylogenomic studies, which demonstrated that all three orders are unrelated and aardvarks belong to the African mammal clade Afrotheria (Asher & Seiffert 2010), which is hardly supported by any anatomical similarities. So much about the congruence of anatomical and genetic similarity predicted by Darwin’s theory.

Next Fossil Friday we will look into another member of the Afrotheria, i.e., the order Macroscelidea that includes the uber cute elephant shrews. 

References 

Anonymous 2022. Dead Pig Walking: Aardvarks, “Living Fossils” in the Bush. Thomson Safaris. https://thomsonsafaris.com/blog/aardvarks-living-fossils/
Asher RJ & Seiffert ER 2010. Systematics of Endemic African Mammals. Chapter 46, pp. 911–928 in: Werdelin L & Sanders WJ (eds). Cenozoic Mammals of Africa. University of California Press, Berkeley (CA), 1008 pp. https://doi.org/10.1525/california/9780520257214.003.0046
Bennett DJ 2017. An Appraisal of the ‘Living Fossil’ Concept. Unpublished Ph.D. thesis, Imperial College, London (UK), xi+251 pp. https://spiral.imperial.ac.uk/bitstream/10044/1/68534/1/Bennett-D-2017-PhD-Thesis.pdf
Cote S, Werdelin L, Seiffert ER & Barry JC 2007. Additional material of the enigmatic Early Miocene mammal Kelba and its relationship to the order Ptolemaiida. PNAS 104(13), 5510–5515. DOI: https://doi.org/10.1073/pnas.0700441104
Crochet J-Y, Hautier L & Lehmann T 2015. A pangolin (Manidae, Pholidota, Mammalia) from the French Quercy phosphorites (Pech du Fraysse, Saint-Projet, Tarn-et-Garonne, late Oligocene, MP 28). Palaeovertebrata 39(2):e4, 1–8. DOI: https://doi.org/10.18563/pv.39.2.e4
Gaudin TJ, Emry RJ & Wible JR 2009. The Phylogeny of Living and Extinct Pangolins (Mammalia, Pholidota) and Associated Taxa: A Morphology Based Analysis. Journal of Mammalian Evolution 16, 235–305. DOI: https://doi.org/10.1007/s10914-009-9119-9 
Koufos GD 2022. The Fossil Record of Aardvarks (Mammalia: Tubulidentata: Orycteropodidae) in Greece. pp. 283–290 in: Vlachos E (ed.). Fossil Vertebrates of Greece Vol. 1. Springer, Cham (CH), xxi+710 pp. DOI: https://doi.org/10.1007/978-3-030-68398-6_10
Le Gros Clark WE & Sonntag CF 1926. A monograph of Orycteropus afer. – III. The skull. The Skeleton of the Trunk and Limbs. Proceedings of the Zoological Society of London96(2), 445–485. DOI: https://doi.org/10.1111/j.1469-7998.1926.tb08108.x
Lehmann T 2006. Biodiversity of the Tubulidentata over Geological time. Afrotherian Conservation 4, 6–11. https://www.afrotheria.net/Afrotherian_Conservation_4.pdf
Lehmann T 2007. Amended taxonomy of the order Tubulidentata (Mammalia, Eutheria). Annals of the Transvaal Museum 44(1), 179–196. https://hdl.handle.net/10520/EJC83654
Lehmann T 2009. Phylogeny and systematics of the Orycteropodidae (Mammalia, Tubulidentata). Zoological Journal of the Linnean Society 155(3), 649–702. DOI: https://doi.org/10.1111/j.1096-3642.2008.00460.x
MacInnes DG 1956. Fossil Tubulidentata from East Africa. In: Fossil Mammals of Africa No. 10. British Museum (Natural History), London (UK), 38 pp. https://www.biodiversitylibrary.org/item/206520#page/5/mode/1up
McKenna MC & Bell SK 1997. Classification of mammals above the species level. Colombia University Press, New York, 631 pp.Nishihara H, Satta Y, Nikaido M, Thewissen JG, Stanhope MJ & Okada N 2005. A retroposon analysis of Afrotherian phylogeny. Molecular Biology and Evolution 22(9), 1823–1833. DOI: https://doi.org/10.1093/molbev/msi179
Patterson B 1975. The fossil aardvarks (Mammalia: Tubulidentata). Bulletin of the Museum of Comparative Zoology 147(5), 185–237. https://ia800200.us.archive.org/15/items/biostor-663/biostor-663.pdf
Patterson B 1978. Pholidota and Tubulidentata. Chapter 12, pp 268–278 in: Maglio VJ & Cooke HBS (eds). Evolution of African Mammals. Harvard University Press, Cambridge (MA), 641 pp. DOI: https://doi.org/10.4159/harvard.9780674431263.c13
Pickford M 1975. New fossil Orycteropodidae (Mammalia, Tubulidentata) from East Africa. Orycteropus minutus sp. nov. and Orycteropus chemeldoi sp. nov. Netherlands Journal of Zoology 25(1), 57–88. DOI: https://doi.org/10.1163/002829675X00137
Pickford M 2019. Orycteropodidae (Tubulidentata, Mammalia) from the Early Miocene of Napak, Uganda. Münchner Geowissenschaftliche Abhandlungen Reihe A 47, 1–101. https://pfeil-verlag.de/en/publications/orycteropodidae-tubulidentata-mammalia-from-the-early-miocene-of-napak-uganda/ 
Pickford M & Andrews P 1981. The Tinderet Miocene sequence in Kenya. Journal of Human Evolution 10(1), 11–33. DOI: https://doi.org/10.1016/S0047-2484(81)80023-1
Savage RJG 1965. Fossil Mammals of Africa No. 19: The Miocene Carnivora of East Africa. Bulletin of the British Museum (Natural History), Geology 10(8), 239–316. https://www.biodiversitylibrary.org/item/112052#page/384/mode/1up
Seiffert ER 2007. A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence. BMC Evolutionary Biology 7(1):224, 1–13. DOI: https://doi.org/10.1186/1471-2148-7-224
Shoshani J 2001. Tubulidentata (Aardvarks). Encyclopedia of Life Sciences Vol. 18. Nature Publishing Group, London (UK). DOI: https://doi.org/10.1038/npg.els.0001578
Simons EL & Bown TM 1995. Ptolemaiida, a new order of Mammalia–with description of the cranium of Ptolemaia grangeri. PNAS 92(8), 3269–3273. DOI: https://doi.org/10.1073/pnas.92.8.3269
Simons EL & Gingerich PD 1974. New carnivorous mammals from the Oligocene of Egypt. Annals of the Geological Survey of Egypt 4, 157–166. http://www-personal.umich.edu/~gingeric/PDFfiles/PDG015_Masrasector.pdf
Simpson GG 1931. Metacheiromys and the Edentata. Bulletin of the American Museum of Natural History 59, 295–381. http://hdl.handle.net/2246/346
Thenius E & Hofer H 1960. Stammesgeschichte der Säugetiere. Eine Übersicht über Tatsachen und Probleme der Evolution der Säugetiere. Springer Verlag, Berlin (DE), 322 pp.
Thewissen JGM 1985. Cephalic evidence for the affinities of Tubulidentata. Mammalia49(2), 257–284. DOI: https://doi.org/10.1515/mamm.1985.49.2.257

Darwinism's failure as a predictive model XX

Darwinism's Predictions 




fundamental premise of evolutionary theory is that evolution has no foresight. It is a blind process responding to current, not future, needs. This means that biological structures do not evolve before they are needed. But many examples of this have been discovered in recent years. For instance, in the embryonic stages of a wide variety of organisms, the development of the vision system is orchestrated by similar control genes known as transcription factors. As one paper explained, “All eyes, invertebrate and vertebrate, develop through a cascade of similar transcription factors despite vast phylogenetic distances.” (Wake, Wake and Specht) Because these transcription factors are so prevalent across the evolutionary tree, they must have evolved in the very early stages of evolution, in an early common ancestor. But that was before any vision systems had evolved. The vision system is just one of several such examples showing that the genetic components of many of today’s embryonic development pathways must have been present long before such pathways existed. Evolutionists now refer to the appearance of these genetic components, before they were used as such, as preadaptation:
 Genome comparisons show that the early clades increasingly contain genes that mediate development of complex features only seen in later metazoan branches. … The existence of major elements of the bilaterian developmental toolkit in these simpler organisms implies that these components evolved for functions other than the production of complex morphology, preadapting the genome for the morphological differentiation that occurred higher in metazoan phylogeny. (Marshall and Valentine) 
Such preadaptation extends beyond embryonic development. For example, several key components of the human brain are found in single-celled organisms called choanoflagellates. Therefore these key components must have evolved in single-celled organisms, long before animals, brains and nerve cells existed. As one evolutionist explained, “The choanoflagellates have a lot of precursors for things we thought were only present in animals.” (Marshall)
 
Another example is the molecular machines for protein transport across the mitochondria inner membrane which must have evolved long before mitochondria existed. (Clements et. al.) As one evolutionist explained, “You look at cellular machines and say, why on earth would biology do anything like this? It’s too bizarre. But when you think about it in a neutral evolutionary fashion, in which these machineries emerge before there’s a need for them, then it makes sense.” (Keim) 

References 

Clements, A., D. Bursac, X. Gatsos, et. al. 2009. “The reducible complexity of a mitochondrial molecular machine.” Proceedings of the National Academy of Sciences 106:15791-15795.
 
Keim, Brandon. 2009. “More ‘Evidence’ of Intelligent Design Shot Down by Science.” Wired Aug. 27. http://www.wired.com/wiredscience/2009/08/reduciblecomplexity/
 
Marshall, Michael. 2011. “Your brain chemistry existed before animals did.” NewScientist September 1.
 
Marshall C., J. Valentine. 2010. “The importance of preadapted genomes in the origin of the animal bodyplans and the Cambrian explosion.” Evolution 64:1189-1201.
Wake D., M. Wake, C. Specht. 2011. “Homoplasy: from detecting pattern to determining process and mechanism of evolution.” Science 331:1032-1035. 


Thursday 22 December 2022

2023: Year of the Darwin Skeptic?

 The Year in Review: Intelligent Design Grows in Influence and Depth 


Each year, as we ask for support for our work from readers of Evolution News, I review the progress the intelligent design program has made in the research, writing, and outreach fields. This past year scientists in our network continued to publish articles in peer-reviewed journals that showcase the predictive and explanatory power of the design framework. Discovery Institute’s Center for Science & Culture published books on topics ranging from artificial intelligence to the miracle of human existence. Leading scientists acknowledged either privately or publicly the weight and substance of design arguments. And a theory of biological design based on engineering principles continued to solidify and expand. There’s a lot to look forward to in 2023 — if we can count on your generous help to make it possible and share it with the world. 

Influencing Leading Scientists 

So let’s review. In 2022, I participated in several conferences and private events in which I interacted with prominent scientists. Several acknowledged the strength of our arguments critiquing the current scientific orthodoxy and defending the evidence for design in life. At a recent conference, I spoke with one of the most recognized and admired evolutionary biologists. In a private conversation, he accepted that the arguments for design based on engineering analyses of living systems were substantive. And during a public lecture, he even tacitly conceded that the information central to life points to design. He stated that he wished to wait for future research to potentially explain the origin of biological information through natural processes. But his tone of voice suggested that he doubted whether such an explanation would ever materialize.

At another meeting, I sat on a panel with one of the leading evolutionary theorists. He stated that standard evolutionary analyses addressing nontrivial transformations typically are severely deficient in their mathematical cogency. He also thanked scholars in the ID network for addressing with rigor and nuance such questions as the rarity of functional protein sequences and the required timescales for generating coordinated mutations. At another conference, top-level biologists affirmed the strength of my arguments for the challenge of evolving new proteins that perform complex tasks. Many still wished to wait for natural explanations for the origin of novel protein structures, but they now much better appreciate the severity of the challenge.  
Life looks designed. But these interactions reminded me that persuading scientists deeply concerned about others’ opinions of them might often prove extremely challenging. And yet, convincing leading scientists with open minds working at elite universities only requires the opportunity of presenting them with the evidence in a safe setting. Stephen Meyer has demonstrated this principle by the endorsements that Return of the God Hypothesis has received from prominent figures including a Nobel laureate physicist. Likewise, Marcos Eberlin demonstrated it by the endorsements his book Foresight received, including three Nobel laureates.  

Theory of Biological Design 

projects moved forward over the past year related to analyzing biological systems from an engineering standpoint. Prominent biomimetics engineer Stuart Burgess published an article in the journal BIO-Complexity that detailed the exquisite highly optimized design of the ankle-foot complex. He also discredited claims that the complex demonstrates poor design. The article parallels the lecture Burgess presented at the Westminster Conference on Science and Faith. 

Another article was recently submitted to a technical journal by a member of the Engineering Research Group (ERG) that describes how applying an engineering modeling tool to molecular machines elucidates their underlying design-logic and reveals deep insights into their operations. Two other members of ERG will submit a similar article related to modeling a metabolic network. Over the next year several additional articles will be submitted to respected scientific journals demonstrating the power of engineering models and principles to advance our understanding of biological systems. These projects represent just a small sample of the research that will commence over the next decade, applying engineering principles and tools to biological investigations.  ERG members are also synthesizing the insights generated by these projects into a comprehensive theory of biological design (TBD). Preliminary components of TBD were presented in the recently published Your Designed Body by Steve Laufmann and Howard Glicksman (here, here). I presented other elements in the recently published book Science and Faith in Dialogue. A free PDF of the book is available for download. This framework will help guide future biologists to expand their understanding of life most effectively, and it will help engineers to best apply the ingenuity seen in life to human creations.  
The evidence for deign in nature continues to reach increasing numbers of people. The Evolution News and Mind Matters news sites served a combined 3.6 million users. Discovery Institute’s YouTube videos received 8.2 million views. Stephen Meyer’s videos at PragerU received over 15 million views. Behind the scenes, ID scientists have developed communication channels with top-level scientists outside our circles who also wish to critically evaluate the scientific status quo about life’s origin and development. Our influence grows and grows despite severe opposition. 

At the same time, scientific research continuously strengthens the design arguments. Origin-of-life experiments continue to highlight the implausibility of natural processes ever generating a minimally complex cell. Rice University chemist James Tour recently launched the second season of his series debunking claims to the contrary. 

Studies of variation and adaptation in numerous species consistently reinforce the fact that evolutionary processes are highly constrained. And advances in systems biology and other biological subdisciplines reveal the same engineering principles used in human engineering employed in life. The differences reflect how life demonstrates far superior design. Our researchers will continue to support and communicate what represents the earliest stages in the next great scientific revolution. Thank you for your support and participation in this important work. Please take a moment now to help keep it going strong in 2023!

Darwinism's failure as a predictive model XVIV

 Darwinism's Predictions

Cornelius G Hunter 


To suppose that the eye,” wrote Darwin, “could have been formed by natural selection, seems, I freely confess, absurd in the highest possible degree.” But Darwin argued that we must not be misled by our intuitions. Given natural selection operating on inheritable variations, some of which are useful, then, if a sequence of numerous small changes from a simple and imperfect eye to one complex and perfect can be shown to exist, and if the eye is somehow useful at each step, then the difficulty is resolved. (Darwin, 143) The key was to identify “a long series of gradations in complexity, each good for its possessor” which could lead to “any conceivable degree of perfection.” (Darwin, 165)
 
But ever since Darwin the list of complex structures in biology, for which no “series of gradations in complexity” can be found, has continued to grow longer. Both the fossil record and genomic data reveal high complexity in lineages where evolution expected simplicity. As one evolutionist explained:
 
It is commonly believed that complex organisms arose from simple ones. Yet analyses of genomes and of their transcribed genes in various organisms reveal that, as far as protein-coding genes are concerned, the repertoire of a sea anemone—a rather simple, evolutionarily basal animal—is almost as complex as that of a human. (Technau) 
Early complexity is also evident in the cell’s biochemistry. For instance, kinases are a type of enzyme that regulate various cellular functions by transferring a phosphate group to a target molecule. Kinases are widespread across eukaryote species and so they must persist far down the evolutionary tree. And the similarity across species of the kinase functions, and their substrate molecules, means that these kinase substrates must have remained largely unchanged for billions of years. The complex regulatory actions of the kinase enzymes must have been present early in the history of life. (Diks)
 
This is by no means an isolated example. Histones are a class of eukaryote proteins that help organize and pack DNA and the gene that codes for histone IV is highly conserved across species. So again, the first histone IV must have been very similar to the versions we see today. An example of early complexity in eyes is found in the long-extinct trilobite. It had eyes that were perhaps the most complex ever produced by nature. One expert called them “an all-time feat of function optimization.” (Levi-Setti, 29) Reviewing the fossil and molecular data, one evolutionist explained that there is no sequential appearance of the major animal groups “from simpler to more complex phyla, as would be predicted by the classical evolutionary model.” (Sherman) And as one team of evolutionists concluded, “comparative genomics has confirmed a lesson from paleontology: Evolution does not proceed monotonically from the simpler to the more complex.” (Kurland) 

References 

Darwin, Charles. 1872. The Origin of Species. 6th ed. London: John Murray.
http://darwin-online.org.uk/content/frameset?itemID=F391&viewtype=text&pageseq=1
 
Diks, S., K. Parikh, M. van der Sijde, J. Joore, T. Ritsema, et. al. 2007. “Evidence for a minimal eukaryotic phosphoproteome?.” PLoS ONE 2.
 
Kurland, C., L. Collins, D. Penny. 2006. “Genomics and the irreducible nature of eukaryote cells.” Science 312:1011-1014.
 
Levi-Setti, Riccardo. 1993. Trilobites. 2d ed. Chicago: University of Chicago Press.
 
Sherman, M. 2007. “Universal genome in the origin of metazoa: Thoughts about evolution.” Cell Cycle 6:1873-1877.
Technau, U. 2008. “Evolutionary biology: Small regulatory RNAs pitch in.” Nature 455:1184-1185. 

The engineering is real.

 Synchronized Swimming in Siphonophores: A Design Worth Imitating

David Coppedge 

Learning more about strange and fascinating creatures could occupy a lifetime. I had heard about siphonophores (“siphon bearers”) but knew little about them. To report on a new paper about their swimming abilities I needed to brush up on their taxonomy, anatomy, physiology, and ecology, so I read articles and watched videos of them in action. As with everything in biology, the closer one looks, the clearer the design: and this one, again, has design worth imitating. 

A Floater to Avoid 

Siphonophores (phylum Cnidaria) are colonial marine organisms exhibiting division of labor: some of the “zooids” (individual members of the colony) provide propulsion; others hunt and digest prey. The best-known siphonophore is the Portuguese man-o’war, known to beachgoers as a jellyfish-like floater to avoid; it has nasty stinging cells strong enough to kill a human: 

But it’s not a jellyfish per se. The bell-shaped jellyfishes with which we are most familiar (phylum Cnidaria, subphylum Scyphozoa) are single individuals. The Portuguese man-o’war is classified in subphylum Hydrozoa, which includes the hydra. Like other siphonophores, it is a colony of individuals with specialized functions. Its distinctive gas-filled, sail-like bladder riding the waves like a Portuguese warship suggested the organism’s name. 


Most other siphonophores — long, rope-like organisms with hairy-looking tentacles and gelatinous bulbs arranged in rows — sit and wait underwater until prey animals like fish and plankton drift into their stinging cells. But siphonophores can swim. In fact, they travel large distances every day. If the fishing is bad, they will move to a better spot. A video taken by a remotely operated submersible for the Nautilus Ocean Exploration Trust shows one purple-colored species swimming leisurely at the bottom of the ocean: 

Its odd shape defied identification at first by the puzzled scientists wondering what it was. That’s understandable, because siphonophores are barely recognizable as animals. Some species can grow to over a hundred feet long (see photo at Smithsonian Magazine). 

Common but Weird and Wonderful 

The common siphonophore Nanomia bijuga is very plentiful in Monterey Bay. A video by the Monterey Bay Aquarium Research Institute of this “weird and wonderful” animal shows its two main sections: a nectosome made up of 5 to 20 nectophores (zooids which do the propulsion), and a siphosome, composed of zooids that sting and digest krill: 

Like other “physonect” siphonophores, N. bijuga has a third part: a “pneumatophore” at the apex of the nectosome. Filled with carbon monoxide gas, the pneumatophore helps keep the colony in a vertical orientation. So numerous and effective are these little predators, they eat more krill per day than all the whales in the bay combined!  


That is remarkable Considering images we have seen of humpback whales gulping big mouthfuls as they lunge with mouth agape into dense swarms of the little shrimp-like crustaceans. Another fascinating fact about N. bijuga is that it participates in the daily migration of plankton (diel vertical migration), descending to 800 meters during the daytime for protection, and up to the surface at night. That’s a lot of swimming for a little foot-long Ironman — a mile a day.  

Jet Propulsion 

Like jellyfish, squid, and octopuses, siphonophores move by jet propulsion. Each nectophore looks like a bubble with a small orifice. The zooid quickly squeezes the bubble, shooting water out to provide thrust, then fills up again. Arranged in pairs along the nectosome, the nectophores cooperate like rowers in a team. One fact about their teamwork fascinated scientists led by Kevin T. Du Clos and Kelly R. Sutherland at the Oregon Institute of Marine Biology, aided by scientists at other institutions including Caltech.  

That fact is that N. bijuga employs both synchronized and asynchronous propulsion: sometimes the nectophores “pull” together, and sometimes they work independently. Why is that, and does it make a functional difference? They published their findings in PNAS: “Distributed propulsion enables fast and efficient swimming modes in physonect siphonophores.” 

Siphonophores are colonial cnidarians that, unlike single jetters such as squids, swim using propulsion from multiple jets, produced using subunits called nectophores. Distributing propulsion spatially provides advantages in redundancy and maneuverability, and distributing propulsion over time enables context-adaptive swimming modes. We use experiments and modeling to compare swimming modes. We show that synchronous swimming produces high mean speeds and accelerations. By contrast, asynchronous swimming consumes less energy. Thus, by simple variations to the timing of thrust production, siphonophores achieve similar functionality to that of fishes, the ability to adapt swimming performance to context. A greater understanding of the benefits of multijet propulsion may also improve underwater vehicle design.  

So once again, we see nature inspiring design by imitation. These scientists found measurable benefits to the travel habits of a lowly, nondescript whatchamacallit. Its ability to get around and migrate a mile a day attracted them to wonder how, and why, with such simple equipment, this organism achieved similar performance to fish. Expecting a reason, they found one: the siphonophore can adapt its “gait” (so to speak) to the needs of the moment: pulling together to escape a predator, but breaking cadence to save energy. It’s something like we see with marching bands, sometimes moving in strict order and sometimes in a “scatter” formation to get into position with less energy.  

Think what the humble common siphonophore’s ingenuity could mean to energy-conscious marine vehicle design: 

Providing specific advice for vehicle design is beyond the scope of this study, but experimental pulsed single jet vehicles that operate within the Reynolds number range this study (SI Appendix, Fig. S1) have been tested (e.g., Re = 1,300–2,700 for (33)), and there are general principles from this study that could be useful for vehicle research and design. Analogously to N. bijuga, a single underwater vehicle with multiple propulsors could use different modes to adapt to context. Our model test cases suggest strategies for tuning the behavior of a vehicle depending on the desired performance characteristics. A propulsion pattern mimicking the asynchronous case—in which thrust is low, and asynchronous—is best if power consumption is the primary concern because it minimizes the cost of transport.  

If speed is more important, the asynchronous-matched case—in which thrust is high and asynchronous—is likely the best because it decreases the cost of transport with only small losses in speed when compared to the synchronous case. Interestingly, the intuitive approach of producing high thrust synchronously (as represented by the synchronous case) may be the least useful, with its primary advantage being high initial acceleration. 

Our results also suggest a general approach to selecting the number of propulsors an underwater vehicle should employ. Swimming speed, efficiency, cost of transport, and synchronous acceleration all improved with increasing colony lengths in our model, but these benefits approached asymptotes for the longest colonies(Fig. 3). For underwater vehicles with few propulsors, adding propulsors may provide large performance benefits, but when the number of propulsors is high, the increase in complexity from adding propulsors may outweigh the incremental performance gains. 

The multijet strategy provides flexibility in the spatial and temporal distributions of propulsion. Multijet swimmers, such as N. bijuga, take advantage of this flexibility to increase their maneuverability, redundancy, and context-specific swimming performance. 

The authors were impressed enough with the animal’s skill, they used the word “design” four times, but evolution zero times. Good thing; trying to figure out the phylogeny of siphonophores is a challenge (Molecular Biology and Evolution). 

The Kicker 

These scientists only focused on the advantages of multijet swimming in synchronous and asynchronous modes, but there’s more. What do these abilities imply? The colony could not do these things without coordination; that implies signaling and quick response by a neural system. The know-how to go where the fishing is good implies sensing systems. The ability to hunt and digest fish implies a digestive system that benefits the community. Foresight is evident in the colony’s ability to stop adding nectophores when the optimum number is reached. 

The design, for sure, proceeds all the way from the whole colony down to each cell, where molecular machines, a genome, and network of parts enables the whole. A siphonophore is, using Douglas Axe’s term, a “functional whole” with design evident at every level. 


It’s quite a show. And like the design plan, the synchronization continues throughout and within every player in the colony — even in the decision to break cadence and go async when that swimming strategy makes the most sense. 

 


Wednesday 21 December 2022

On the death blow to spontaneous generation.

The 200th Birthday of Louis Pasteur: A Man of Science and Faith 

 Evolution News 

December 27, 2022, marks the 200th anniversary of the birth of Louis Pasteur, the French scientist whose scientific breakthroughs have saved millions of lives, and whose work on microbes sounded the death knell for the idea of spontaneous generation. On a new episode of ID the Future, biologist Ann Gauger describes the triumphs, flaws, and tragedies in the life of this extraordinary individual.
In the 19th century, it was widely believed that the spontaneous generation of life from non-life was common and unremarkable, since it was thought that spontaneous generation of worms, mold, and other life forms occurred all the time in rotting meat and dirty rags. Pasteur constructed an experiment demonstrating that these “spontaneously” arising worms and such in fact sprang from microorganisms contained in the dust of the air. In this way Pasteur lent decisive support to the view summarized in the Latin phrase, “Omne vivum ex vivo” — all life is from life. This is sometimes referred to as the law of biogenesis and it holds that organisms do not spontaneously arise in nature from non-life.

Thanks in no small part to Pasteur’s work in this area, the origin of the first life on Earth came to be seen as a powerful mystery for scientists committed to the chance origin of the first life, a mystery deepened by discoveries in the 20th and 21st centuries showing that even the simplest single-celled life is vastly more sophisticated than even our most advanced manmade factories.

There is much more to the fascinating life and work of Louis Pasteur, from his pioneering and life-saving work on vaccines and the special relationship he had with his wife to his Christian faith that bore him up through the death of three of his children. Tune in to learn about this complex man of science and faith. And for more on the enigma of the first life, see the 2020 book from Discovery Institute Press, The Mystery of Life’s Origin: The Continuing Controversy. 

On the forbidden question.

“Why Life?”: A Question Atheist Scientists Never Ask 

Stephen Jacobini 

One cannot understand organisms — that is, life itself — without incorporating the concept of purpose within biology, the science of organisms. Such purpose is observable and measurable, and therefore well within the bounds of scientific inquiry.


The facts are clear. All life is purpose-driven, from the biomolecule up to the ecosystem itself, and everything in between. Angiosperms cannot reproduce without insects, and pollinating insects cannot live without nectar. Chipmunks cannot live without acorns, and oak trees cannot propagate without chipmunks. Even something as catastrophic as the eruption of Mount St. Helens was, in the end, a life-giving event. In the subsystem of biology known as succession, fire and even lava are sometimes necessary to bring forth new life. 

A Struggle for Existence 

More strikingly, the purpose-driven nature of life precedes Darwinian natural selection as the fundamental agency of evolution. Simply put, the well described Darwinian struggle for existence can occur if and only if living creatures “make the effort.” The word “struggle” is apropos. Surviving in the wild is not easy. It requires constant vigilance, exertion, and determination. That’s true even for the king of beasts. There was never a lioness who took down a wildebeest or water buffalo without risking a fatal blow from hooves or horns. The great white shark must roll its eyes back behind its jaws to survive its own attack upon its prey. 

No Mystery Here? 

To an atheist scientist, none of this seems mysterious. 


The shark, the lion, and every other predator is simply driven to the hunt by hunger. And that is just a chemical reaction, when the gut sends a message to the brain that there is a need for nutrition. It is the same with reproduction, they would say. The urge to mate is purely physiological. Despite the great risk, bulls and boars and bucks will fight it out for the right to breed.


As for those creatures that are preyed upon, they watch out carefully for danger, and flee from the hunter. Understanding the biochemistry of not wanting to have your flesh torn open is not hard to understand.


Of course, that is all true. The issue is not whether we can understand the behavior of animals surviving in the wild. Or surviving indoors, where conditions are safer. I recall vividly as a child in school watching the clock tick up to noon, anxious to be able to open my lunch pail and satisfy my hunger. There was nothing profound about that.


But in order to understand life, it is not sufficient to simply observe what is happening. The real question is why things are the way they are. 

But in order to understand life, it is not sufficient to simply observe what is happening. The real question is why things are the way they are.


However, did we not just decide that animals eat because they are hungry and avoid danger to eschew harm? Yes, these are clearly purpose-driven activities, and they all have a biochemical or physiologic basis.


True enough. But the deeper question is, why are these physiologic stimuli there in the first place? Answer: to allow for life. But then… why life?


“Why life?” is the ultimate question. 


If, as the atheist scientists endlessly insist, we exist merely as an accidental collocation of molecules strewn together on some small planet in the backwater of an insignificant galaxy, then again, “Why life?”

Time, Energy, and Matter 

The answer, finally, comes all the way back to where we started: purpose. Time, energy, and inanimate matter carry on ceaselessly with no apparent purpose. But arising out of the inorganic are living creatures, utterly purpose-driven. There is absolutely no reason for purpose-driven life to exist within this milieu, unless purpose itself exists at the fundamental core of reality itself.


Every religion has taught this, always. It is not a new revelation, however forgotten in modern times. 


Let us return to the wisdom of our elders. 


Reductive physicalism in a nutshell

 It's like finding a book written in an unknown language and then imagining that a study of the physical and chemical properties of paper and ink would be sufficient to decipher said book or explain its origin.

Still the gold standard.

Bloodless Medicine and Surgery 

Englewood health 

Institute for Patient Blood Management and Bloodless Medicine and Surgery 


Englewood Health offers a progressive approach to blood management to all patients in our care. Our internationally recognized program offers safe and effective transfusion-free medical and surgical techniques. Bloodless medicine and surgery can:


improve patient outcomes

eliminate the risks associated with blood transfusions

respect the needs of patients for whom blood transfusion is not an option 

Patient blood management is the use of science-based medical and surgical techniques to conserve a patient’s own blood and minimizing or avoiding the need for the transfusion of donor blood components. Many people object to receiving blood or blood products. Jehovah’s Witnesses, for example, object based on religious beliefs. Others do so as a result of healthcare concerns, knowledge of potential complications, or other personal convictions.


Strong scientific evidence shows that overall, patients who avoid transfusions have fewer complications, faster recoveries, and shorter hospital stays. Benefits of patient blood management include lower rates of the most serious postoperative complications, including heart attack, stroke, and infections; decreased risk of immunological complications and allergic reactions; less exposure to blood-borne viruses and infections; and no risk of receiving the wrong blood type 

Our Mission 

Our mission is to improve patient outcomes by making optimal patient blood management (PBM) the standard of care for all patients. 

Our Vision 

Englewood Health, through the Institute, will incorporate the latest advances in PBM research, medical information and clinical innovation throughout the continuum of care. 

Our Values 

Guided by ethical and humanistic principles, our program provides consistently accessible, high-quality PBM to all patients, including bloodless care for patients for whom transfusion is not an option. We accomplish this by aligning the very best that medicine, science and technology offer with the goals of each individual patient.


Maintaining its position as the global leader in PBM, the program is committed to the ongoing education and training of all healthcare professionals and the public, thereby expanding community awareness of the benefits of optimal patient blood management. 

News: Watch our documentary film, The birth of bloodless,the Englewood experience now available online. The film chronicles the 25-year history of the bloodless medicine program at Englewood Health, tracing its roots from its humble beginnings to its current reputation as the model for patient blood management programs throughout the world. 

Sons of the original firemaker? II

 Neanderthals Had a Thing for Eagles — And Hyenas 

Evolution news 

Although technically a dog expert, Mark Derr has given some thought since the 1990s to Neanderthal man who seems to get smarter each time we study him:

For instance, Neanderthal appears to have mastered and used fire for a variety of purposes including cooking after their appearance in Eurasia some 300,000 or more years ago. They also made carvings into ivory, and they almost certainly communicated using speech. To show how slowly attitudes change, I have recently seen people speculate that Neanderthal may have only seasonally had fire, but in general were incapable of igniting tinder on their own. This view recently received what would appear to be a mortal blow when Ceren Kabukcu and colleagues revealed that Neanderthal not only had fire throughout the year, but also used fire to cook a wide variety of foods which they consumed. 


MARK DERR, “NEW VIEWS OF NEANDERTHAL ARE RESHAPING PREHISTORY” AT PSYCHOLOGY TODAY (DECEMBER 11, 2022) 

He raises the fact that Neanderthals had an interesting relationship with raptors and hyenas. 

Elsewhere, we have learned that Neanderthal captured golden eagles and other raptors, presumably to take their talons and feathers for use in various rituals and decorative objects. According to Stewart Finlayson et al., the Neanderthals “selectively took the largest raptors at their disposal within Eurasia,” which turned out to be the golden eagle, with regional and local exceptions. Whether they hunted with golden eagles is not known, but given the time and effort they spent collecting them, it is not unimaginable that they did not at least make an attempt to tame them. 


MARK DERR, “NEW VIEWS OF NEANDERTHAL ARE RESHAPING PREHISTORY” AT PSYCHOLOGY TODAY (DECEMBER 11, 2022) 

While we don’t know if Neanderthals tried falconry, as it is called, it’s well established that they used the eagles’ feathers and talons “perhaps as religious totems, perhaps as icons of personal strength.” (Audubon News, June 21, 2019) Researchers think that Neanderthal use of raptor emblems in this way is an instance of symbolic expression, implying an intellectual life. (PLOS, March 5, 2012) Neanderthals also incorporated corvids (crows, for example) into their symbolic life. The crow, like the eagle, is rich in symbolism in many human cultures. 

What About the Hyenas? 

There’s a story in that: Neanderthals are not thought, based on current evidence, to have had much interest in dogs, Mietje Germonpré, a vertebrate paleontologist at the Royal Belgian Institute of Natural Sciences told Derr: “archeological evidence suggests that modern humans had a special interest in canids, while such an interest seems absent in Neanderthals.”


But they had a special regard for the hyena, the most dog-like of felines. Neanderthal and hyena remains have been discovered together in caves: 

Hyenas and Neanderthals appear to have had an especially extensive relationship, the boundaries of which are unknown. One might ask whether hyenas were Neanderthals’ “dogs.” Upper Paleolithic sites reveal, in contrast with Middle Paleolithic sites, large quantities of personal objects made from canid teeth, especially from foxes, wolves, and bears. 


MARK DERR, “NEW VIEWS OF NEANDERTHAL ARE RESHAPING PREHISTORY” AT PSYCHOLOGY TODAY (DECEMBER 11, 2022) 

Well, there is only one way to find out: Keep digging.


You may also wish to read: Our ancestors were cooking much earlier than thought. The more we learn about early humans, the more sophisticated we find their culture to be. The basics of human culture seem to undergo less development than we think. The culture may appear at about the same time as the humans.

Tuesday 20 December 2022

Be grateful for your body's flawless design.

A Physician’s Fantastic Voyage through Your Designed Body 

 Evolution news 

On a new episode of ID the Future, Your Designed Body author and physician Howard Glicksman takes a close looks with Philosophy for the People podcast host Pat Flynn at Glicksman’s new book, co-authored with systems engineer Steve Laufmann. As Glicksman puts it, he and Laufmann consider not just how the human body appears but what it actually takes for it to work and not die, and what this implies for evolutionary theory.


Begin by piling up the layers of complexity in the human body — the layer upon layer of complex interdependent systems. Then ask hard questions about whether any blind and gradual evolutionary process could have kept our evolutionary ancestors alive at every generational stage as all this was gradually engineered by countless random mutations over millions of generations, beginning with the first single-celled organisms billions of years ago. Once one faces those hard questions without retreating to vague just-so stories about nature needing vision (or hearing or any number of other bodily functions) and therefore magically evolving it, at that point Darwinism’s story of gradual and blind evolution collapses. The explanation that is left standing, according to Glicksman, Laufmann, and Your Designed Body, is intelligent design. Download the podcast or listen to it here

Darwinism's failure as a predictive model XVIII

 Darwinism's Predictions 

Cornelius G Hunter 

Ever since Darwin the universal evolutionary tree has been a unifying principle in biology. Evolution predicted that this universal tree can be derived by arranging the species according to their similarities and differences. And as more data became available, particularly from the dramatic breakthroughs in molecular biology in the latter half of the twentieth century, expectations were high for the determination of this tree. As one paper explains, “Once universal characters were available for all organisms, the Darwinian vision of a universal representation of all life and its evolutionary history suddenly became a realistic possibility. Increasing reference was made to this universal, molecule-based phylogeny as the ‘comprehensive’ tree of the “entire spectrum of life” (O’Malley and Koonin) But those expectations were dashed: “By the mid-1980s there was great optimism that molecular techniques would finally reveal the universal tree of life in all its glory. Ironically, the opposite happened.” (Lawton)

 

As one study explained, the problem is so confusing that results “can lead to high confidence in incorrect hypotheses.” And although evolutionists thought that more data would solve their problems, the opposite has occurred. With the ever increasing volumes of data, incongruence between trees “has become pervasive.” (Dávalos) As another researcher explained, “Phylogenetic incongruities can be seen everywhere in the universal tree, from its root to the major branchings within and among the various taxa to the makeup of the primary groupings themselves.” (Woese) These incongruities are not minor statistical variations and the general failure to converge on a single topology has some researchers calling for a relaxation from “tree-thinking.” (Bapteste, et. al.) Nor are these incongruities limited to protein-coding genes. As one research commented, “I’ve looked at thousands of microRNA genes, and I can’t find a single example that would support the traditional tree.” (Dolgin) 

These incongruities have forced evolutionists to filter the data carefully in order to obtain evolutionary trees. As one paper explains, “selecting genes with strong phylogenetic signals and demonstrating the absence of significant incongruence are essential for accurately reconstructing ancient divergences.” (Salichos and Rokas) But this raises the question of whether the resulting tree is real: “Hierarchical structure can always be imposed on or extracted from such data sets by algorithms designed to do so, but at its base the universal TOL [tree of life] rests on an unproven assumption about pattern that, given what we know about process, is unlikely to be broadly true.” (Doolittle and Bapteste). 

References 

Bapteste E., et. al. 2005. “Do orthologous gene phylogenies really support tree-thinking?.” BMC Evolutionary Biology 5:33.

 

Dávalos L., et. al. 2012. “Understanding phylogenetic incongruence: lessons from phyllostomid bats.” Biological Reviews Cambridge Philosophical Society 87:991-1024.

 

Dolgin, E. 2012. “Phylogeny: Rewriting evolution.” Nature 486:460-462.

 

Doolittle, W., E. Bapteste. 2007. “Pattern pluralism and the Tree of Life hypothesis.” Proceedings of the National Academy of Sciences 104:2043-2049.

 

Lawton, G. 2009. “Why Darwin was wrong about the tree of life.” New Scientist January 21.

 

O’Malley, M., E. Koonin. 2011. “How stands the Tree of Life a century and a half after The Origin?.” Biology Direct 6:32.

 

Salichos L., A. Rokas. 2013. “Inferring ancient divergences requires genes with strong phylogenetic signals.” Nature 497:327-331.

Woese C. 1998. “The universal ancestor.” Proceedings of the National Academy of Sciences 95:6854-6859. 

On the salt of the earth and the design Inference.

Salt of the Earth Regulates Habitability 

 David Coppedge 

nasa’s astrobiology program leans heavily on the assumption that any location where liquid water can persist is a potential place for life to emerge and evolve. consequently, those interested in the question of life beyond the earth have typically limited their searches to watery places. usually those were planets orbiting within their particular “continuously habitable zone” (chz), defined as the distance from the host star where h2o could remain in the liquid state for long periods of time. the chz has inner and outer radii with temperatures between 0 and 100°c, the freezing and boiling points for h2o. if a planet stays within the chz throughout its orbit, it is deemed “habitable” whether or not it has inhabitants.


later astrobiologists realized that other locations with liquid water exist. subsurface oceans of water are suspected on icy moons like europa at jupiter, enceladus at saturn, triton at neptune, and possibly a few others. because in situ investigation of those places are unlikely till far in the future, we will restrict our discussion to the orbital chzs. one caveat about habitable zones is that they can migrate. some types of host stars become hotter or cooler over time. the chz, correspondingly, will move outward or inward. 

Faint Young Sun 

Our own sun is thought to have been 20 percent cooler in its early history. As Earth could not have migrated inward to adjust, this creates a “faint young sun paradox” that astrobiologists must address in their models of life’s history on Earth. If a faint sun resulted in Earth orbiting outside the CHZ for a time, it could have become a giant “Snowball Earth” that could only melt back to normal with difficulty. A Snowball Earth could be a dead end; the high albedo of water ice would reflect more solar warmth back out to space. Some doubt it could ever recover. It’s best, therefore, to avoid snowball scenarios in models of Earth history.


A deeper dive into requirements for habitability shows that it is too simplistic to assume that being “in the zone” (CHZ) qualifies a planet for habitability. The right atmosphere, crustal composition, inclination, obliquity, rotation period, and other factors bear strongly on the question. Books such as The Privileged Planet, Rare Earth, and A Fortunate Universe have added to the list of requirements, including factors like stellar class, the avoidance of tidal locking, and presence of a stabilizing large moon. Most recently, Denton’s The Miracle of Man and the earlier books in his Privileged Species series have focused attention on essential chemical elements for life — over a dozen of them — that must be available near the surface of putative habitable planets. His book The Wonder of Water (see the video below) explains H2O’s many properties that benefit life. 

Climate Consequences 

And yet one property of water — its ion content — has been largely neglected by astrobiologists. Table salt (NaCl) is the most common ionic compound in sea water. Its ease of dissolving in water sets up electrical properties between its positive sodium (Na+) and negative chlorine (Cl–) ions. As a paper discussed below says, “Salt affects seawater density and ocean dynamics via direct mass effects and through its influence on charge density and ionic interactions with polar water molecules.” One effect of salinity is lowering the freezing point of water; this is the reason for salting roads in winter.


Sea water on Earth presently contains about 35g/kg of NaCl. Has this value remained constant throughout the history of the Earth? And does the concentration of salt in a planet’s oceans have any effect on its habitability? Surprisingly, the relationship between salinity and habitability has received scant attention till now. News from Purdue University announced that “salt may be the key to life on Earth and beyond.”

The composition of the atmosphere, especially the abundance of greenhouse gases, influences Earth’s climate. Researchers at Purdue University, led by Stephanie Olson, assistant professor of earth, atmospheric, and planetary sciences, have recently found that the presence of salt in seawater can also have a major impact on the habitability of Earth and other planets. 

The Purdue team modeled the effects of salinity and found that increases or decreases in ocean salt concentration have profound effects on habitability. Their paper, by Olson et al., “The Effect of Ocean Salinity on Climate and Its Implications for Earth’s Habitability,” was published open access in Geophysical Research Letters. 

The influence of atmospheric composition on the climates of present-day and early Earth has been studied extensively, but the role of ocean composition has received less attention. 

A major finding in the paper is that high salinity warms the climate by affecting ocean currents. This may answer, the authors believe, the faint young sun paradox: i.e., how our planet avoided the Snowball Earth scenario when the solar luminosity (solar energy per unit area, in watts per square meter) was 20 percent lower, according to theories of stellar evolution for G2 main sequence stars like our sun. 

We find that saltier oceans yield warmer climates in large part due to changes in ocean dynamics. Increasing ocean salinity from 20 to 50 g/kg results in a 71% reduction in sea ice cover in our present-day Earth scenario. This same salinity change also halves the pCO2 threshold at which Snowball glaciation occurs in our Archean scenarios. In combination with higher levels of greenhouse gases such as CO2 and CH4, a saltier ocean may allow for a warm Archean Earth with only seasonal ice at the poles despite receiving ∼20% less energy from the Sun. 

Ecological Consequences 

Too much salt, on the other hand, can be hostile to life. Watch plant roots bend to avoid salt in a news item from the University of Copenhagen. The Purdue authors did not consider the effects on organisms with 50g/kg NaCl (their highest model value). Some organisms are remarkably salt-tolerant now, but evolutionists do not think they began that way. The Dead Sea, with over 340 g/kg, is dead for a reason. Rising salinity in California’s Salton Sea has killed most of the fish that once attracted anglers to its shores (Desert Sun). On Mars, the pervasive concentration of perchlorate salts worries some astrobiologists about the possibility of life there. 


Other consequences of changes in salinity not discussed by the paper in detail include interactions with other ions and elements critical for life. Tinkering with salt is likely to cause unintended consequences.

Fine Timing 

The paper’s conclusions rest on assumptions that are difficult to test and are somewhat dubious. For instance, modeling high salt concentration initially to keep the planet from freezing under a cooler sun could appear like special pleading; how do they know salt concentrations did not start initially low instead, increasing as water eroded the continents? Do they have an experimental basis for presuming higher salinity in the past? They cite a couple of papers, but note that  

Archean salinity remains poorly constrained. Our goal is thus not to offer a definitive view of a single moment in Earth’s history; instead, our goal is simply to explore the response of the climate system to changing ocean salinity and to assess the potential significance of these effects in the context of reduced solar luminosity on early Earth. 

More important for a design view of the Earth is the relation between salinity and habitability. Is the value of 35g/Kg NaCl a “Goldilocks” value? Has the salinity value remained stable while life was present, but fluctuated, increased monotonically, or decreased prior to life’s appearance? If both questions yield affirmative answers, there might be evidence of fine timing to consider, a possible homeostasis in salt geology as well as salt biology. Notice the delicate balance that results from changes in salinity, according to the authors: 

Present-day seawater with a salinity of 35 g/kg freezes (and is most dense) at −1.9°C, and saltier oceans freeze at progressively lower temperatures. In combination, these three density effects may profoundly affect the density structure of the ocean, its circulation, and ocean heat transport to high latitudes with consequences for sea ice formation. Even small differences in sea ice formation may yield significant climate differences through interaction with the positive ice-albedo feedback. 

Then the authors point out that salinity is a dynamic value. It thus becomes crucial to understand the sources and sinks of salt. 

Sodium (Na+) and chlorine (Cl−) are the primary ions contributing to ocean salinity today. The residence times of Na+ and Cl− ions in the ocean are 80 and 98 Myr, respectively, much shorter than the age of the Earth. 

The authors point out that salinity also affects the concentration of atmospheric CO2. This becomes another complication not previously considered in climate models. Notice the word “coincidence” in this eye-opening statement: 

The salinity evolution of Earth’s ocean is not yet well constrained, but constant salinity through time would be a notable coincidence or imply some currently unknown feedback. Climate models that implicitly assume present-day salinity may thus yield misleading views of Earth’s climate history. 

The paper raises interesting new questions more than it provides definitive answers: 

It is thus unclear whether accounting for changes to sea salt aerosol in our model would have a large effect on climate and whether these effects would amplify or offset warming with increasing salinity in our model scenarios. The relationships between ocean salinity, atmospheric water vapor, cloud nucleation, precipitation patterns, and surface temperature on short and long timescales remain an exciting opportunity for future work. 

A Critical Role 

That’s enough quotation to point out the criticality of salt to habitability. Those interested in the details can follow the authors’ arguments in the paper. Suffice it to say that a planet designer would have had to regulate an additional factor — salt — to make it livable. Liquid water alone is not enough to maintain a CHZ. One cannot tinker recklessly with salt concentration without knocking a planet out of the Goldilocks zone. If the models require beginning with a cooler sun, was it a lucky coincidence to start with higher salinity to keep the Earth warm, then decrease it steadily as the sun brightened?


The Purdue research adds two factors to the list of requirements for habitability that Denton, Gonzalez, Richards and others have compiled: (1) fine tuning of salt concentrations for a stable climate, and (2) fine timing of salt dynamics under a changing solar constant. Maybe there is something new under the sun after all: the salt of the Earth.

Monday 19 December 2022

The latest in our unending search for straight answers.

Exodus5:2ASV"And Pharaoh said, Who( Not what) is JEHOVAH...?"  

Can any trinitarian give us a straight answer to Pharaoh's querie?


Darwinism's failure as a predictive model.XVII

 Darwinism's predictions 

Cornelius G Hunter 



Just as evolution predicts that gene trees and species trees should be congruent, it also predicts that different gene trees should be congruent. In 1982 David Penny and co-workers tested this prediction. They wrote that “The theory of evolution predicts that similar phylogenetic trees should be obtained from different sets of character data.” Their character data came from five different proteins and they concluded “there is strong support from these five sequences for the theory of evolution.” (Penny, Foulds and Hendy) But in later years, as more genetic data became available, it was clear that different genes led to very different evolutionary trees. As one study explained, the sequences of genes, “often disagree and can seldom be proven to agree.” (Doolittle and Bapteste) It is now well understood that “Gene and genome trees conflict at many levels” (Haggerty, et. al.) and that “Incongruence between gene trees is the main challenge faced by phylogeneticists in the genomic era.” (Galtier and Daubin) For evolutionists this failed prediction will require more complicated models of evolutionary history. As Penny now writes, he is “not rejecting the tree per se but enriching the tree concept into a network.” (Penny) 

References 

Doolittle, W., E. Bapteste. 2007. “Pattern pluralism and the Tree of Life hypothesis.” Proceedings of the National Academy of Sciences 104:2043-2049.

 

Galtier, N., V. Daubin. 2008. “Dealing with incongruence in phylogenomic analyses.” Philosophical Transactions of the Royal Society B 363:4023-4029.

 

Haggerty, L., et. al. 2009. “Gene and genome trees conflict at many levels.” Philosophical Transactions of the Royal Society B 364:2209-2219.

 

Penny, D. 2011. “Darwin’s Theory of Descent with Modification, versus the Biblical Tree of Life.” PLoS Biol 9:e1001096.

Penny, D., L. Foulds, M. Hendy. 1982. “Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences.” Nature 297:197-200.

Hope has fallen?

Bioethicist: Having Children Is Bad 

Wesley J. Smith 

This is the world of bioethics, the “experts” whom we are supposed to trust to guide public policy on a range of issues, from medical policy to environmental law.


We should not listen to a word the mainstreamers have to say — as this article telling us not to have children makes clear. From “Science Proves Kids are Bad for the Earth,” by Travis Reider, published at NBC Think: 

A startling and honestly distressing view is beginning to receive serious consideration in both academic and popular discussions of climate change ethics. According to this view, having a child is a major contributor to climate change. The logical takeaway here is that everyone on Earth ought to consider having fewer children. 


The Chinese Model 

Talk about shades of China family-planning theory. We must destroy much of what makes life worth living in order save the planet! 

The argument that having a child adds to one’s carbon footprint depends on the view that each of us has a personal carbon ledger for which we are responsible. Furthermore, some amount of an offspring’s emissions count towards the parents’ ledger. 

Whatcrap. We do not have to feel guilty for being alive. Moreover, children bring great joy into the world. They are the posterity to whom the future will belong and depend. They are the hope of the world, not environmental disasters. 

The Most Important Endeavor 

If I release a murderer from prison, knowing full well that he intends to kill innocent people, then I bear some responsibility for those deaths — even though the killer is also fully responsible. My having released him doesn’t make him less responsible (he did it!). But his doing it doesn’t eliminate my responsibility either.


Something similar is true, I think, when it comes to having children: Once my daughter is an autonomous agent, she will be responsible for her emissions. But that doesn’t negate my responsibility. Moral responsibility simply isn’t mathematical. . . .


Having a child imposes high emissions on the world, while the parents get the benefit. So like with any high-cost luxury, we should limit our indulgence.

No. Choosing to bring new life is not an environmental wrong. It is the best that life has to offer.


This is why I call it global-warming hysteria. And it’s an example of why I think most bioethics discourse pushes us away from policies and actions that make for a healthy and vibrant society.

Ps. Luke23:29NIV"For the time will come when you will say, ‘Blessed are the childless women, the wombs that never bore and the breasts that never nursed!’" 

For the record I believe that both the author and the mainstream bioethicists he vehemently opposes mean well but they both attacking the symptoms and not the disease.