Search This Blog

Wednesday 8 February 2023

On the slowing of the earth's core.


Fiat money: Pros and Cons.


James Tour re: the origin of life science's failure to explain away design.

<iframe width="732" height="424" src="https://www.youtube.com/embed/9qxoH7u3FXw" title="Dr. James Tour: How Did Life Come into Being?" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> 

Yet more on the science of design detection

<iframe width="932" height="524" src="https://www.youtube.com/embed/uZN5xjoS6TU" title="David Kipping: Alien Civilizations and Habitable Worlds | Lex Fridman Podcast #355" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> 

Monday 6 February 2023

Yet more on why I D has long been mainstream.

SETI: Inventing Minds to Find Minds

David Coppedge  


One of the most intense projects in design detection is being carried out by people who deny the reality of intelligent design. For decades, SETI enthusiasts, who are largely materialists (as was their early protagonist Carl Sagan) have waded through radio signals and computer printouts, looking for some “Wow!” signal that they believe would isolate intelligent causes from natural causes — all while insisting that the intelligent causes emerged out of natural causes. If this sounds like special pleading, perhaps it is.Now, the SETI Institute has a new project that makes their cognitive dissonance curiouser and curiouser. They are planning to use artificial intelligence (AI) to look for the intelligent signals. But then, many SETI enthusiasts believe that biological intelligences on some advanced outposts have been supplanted by artificial intelligences of the aliens’ own making. In a real sense, they will use robots to look for robots. That’s to say, they believe that brains that emerged by natural processes are capable of designing intelligent systems that can look for signals from intelligent systems that were the products of brains that had emerged by natural processes. Welcome to the convoluted philosophy of SETI.

News from the SETI Institute asks, “Will Machine Learning Help Us Find Extraterrestrial Life?” Watch for words signifying mental powers of human minds.

January 30, 2023, Mountain View, CA — When pondering the probability of discovering technologically advanced extraterrestrial life, the question that often arises is, “if they’re out there, why haven’t we found them yet?” And often, the response is that we have only searched a tiny portion of the galaxy. Further, algorithmsdeveloped decades ago for the earliest digital computers can be outdated and inefficient when applied to modern petabyte-scale datasets. Now, research published in Nature Astronomy and led by an undergraduate student at the University of Toronto, Peter Ma, along with researchers from the SETI Institute, Breakthrough Listen and scientific research institutions around the world, has applied a deep learning technique to a previously studied dataset of nearby stars and uncovered eight previously unidentified signals of interest.


These are strange behaviors for meat robots to engage in.

“Signals of Interest”

They cheerfully boast about how many stars they’ve looked at, how many “signals of interest” have been found so far, and what they hope to achieve. After 63 years of searching, new tools had to be developed to handle the volume of data. The 2017 search of 820 nearby stars yielded 150 terabytes of data that meat-style brains decided were “devoid of interesting signals.” In the recent effort AI techniques turned up eight signals worth following up on.

This massive volume of data requires new computational tools to process and analyze that data quickly to identify anomalies that could be evidence of extraterrestrial intelligence. This new machine learning approach is breaking new ground in the quest to answer the question, “are we alone?”

In some far future imaginary world, when the meat robots have gone extinct and metal minds have replaced them, would an alien civilization with meat brains be able to isolate intelligent causes from physical causes, and conclude that our robot descendants were not natural?

Nature and Natural Causes: Is Differentiation Natural?

The same day as the SETI Institute article, a “news explainer” at Nature asked, “Will an AI be the first to discover alien life?” Here is what the AI is being called on to do.

The biggest challenge for us in looking for SETI signals is not at this point getting the data,” says Sofia Sheikh, an astronomer at the SETI Institute. “The difficult part is differentiating signals from human or Earth technology from the kind of signals we’d be looking for from technology somewhere else out in the Galaxy.”

Differentiating technology on Earth from technology elsewhere is one step removed from the underlying assumption: the human mind can “differentiate signals” in observable phenomena. Intelligence in silico is merely a tool, an extension, of what the meat computer asks it to do. That’s true of most tools. A hammer is an extension of the hand, but the hammer lies inert in the tool chest until grasped and directed by the hand, which is directed by the brain. But what directs the brain to direct the hand to direct the hammer? Is there an ultimate differentiator in the functional result?

Your Designed Body

To be sure, life is full of signals and differentiation processes. As described in Chapter 14 of Your Designed Body by Steve Laufmann and Howard Glicksman, the immune system routinely patrols the bloodstream to differentiate friend from foe, self from non-self, and new threat from old threat. Signal transduction is a key concept in biochemistry, and signal recognition proceeds all the way up to the organism and beyond. But would the orchestrated responses to signals function without some master controller at the top of the differentiation hierarchy? The moment a body dies, all those molecules and codes still exist, but they cannot act on their own.

Similarly, artificial devices can differentiate signals. An imaginary Maxwell’s Demon could separate hot from cold molecules against the principle of entropy increase, but the device would be traceable to a choosing mind — a master differentiator. It could be said that SETI is an effort by differentiators to detect differentiators. If differentiation were natural, we would find differentiation in rocks and sand that perform functions contrary to the tendencies of natural law, just like Aristotle quipped that “If the art of ship-building were in the wood, ships would exist by nature.”

What Rocks Could Do

To maintain materialism, the SETI people would have to conclude that if robot signals can be differentiated by our robots, then robots exist by nature. This would likely insult the programmers who worked so hard to write the software. Would Frank Marchis at the SETI Institute, who is involved with the AI search, tell his programmers that they’re just doing what rocks could do, given billions of years?

For the humor of it, consider what astrophysicist Paul Sutter said on Live Science last month: “Alien life could be turning harsh planets into paradises — and astronomers want to find them.” He proposes a new extension of the Habitable Zone concept, bouncing off “new research, published to the preprint server arXiv.org, [that] suggests that our current definition of the habitable zone may be too narrow because it doesn’t include how life influences a world.” Call in the (non-religious) Deities:

Therefore, we must rethink the traditional definition of the habitable zone. The researchers propose a new one: the Gaian habitable zone (from Gaia, the Greek mythological personification of the Earth). This zone would be wider than what we currently consider suitable for life, because life itself is capable of changing the boundaries of the suitable.

He speaks as if personifying the Earth is a quaint fallacy of less enlightened minds. But think about it; do rocks personify the Earth? Do rocks create myths? If they did, then we would have gods and myths by nature. Look for the words implying mental activity again:

The researchers argue that we should employ these broader definitions of the habitable zone in selecting future targets for exploration. If the habitable zone is too narrow, we may miss signs of life, simply because we’re looking in the wrong place. No matter what, when searching for extraterrestrial life, we must keep an open mind and be prepared for surprises. Life … finds a way.

Summarizing, life finds a way to design robots (but not by intelligent design) that can differentiate signals as long as it keeps an open… an open… whatever! 

In this mode of thinking, why go to the trouble of building robots? Design detection is natural. Human researchers are superfluous. The art of shipbuilding is in the wood. Planets are already differentiating between themselves though hundreds of light-years apart. Gaia oversees this natural activity, but she is NOT religious! 















The only way to please everybody?

<iframe width="932" height="524" src="https://www.youtube.com/embed/7rh4XmxJNgg" title="Democratic Disney vs. Republican Disney" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> 

Solar energy:the fine print.

 <iframe width="932" height="524" src="https://www.youtube.com/embed/tJvpn98XsHQ" title="Peter Zeihan - The Solar Power Problem(s)" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>

Well past the slippery slope?

Suicide Tourism Comes to Oregon

Wesley Smith  

Assisted-suicide activists always promise that strict guidelines will protect against abuse. It’s a big con. The guidelines are not really strict. They rely primarily on self-reporting. And they are meant to be temporary: As soon as political conditions permit, the access to doctor-prescribed death expands.

Witness Oregon. When Measure 16 passed, assisted suicide was limited to state residents. That requirement was recently deemed inoperative by the state’s ever-flaccid suicide regulators after a Lawsuit was settled and is expected to soon be repealed.

Opening the Floodgate

That threatens to open a floodgate and transform Oregon into the U.S. equivalent of Switzerland, where suicide clinics flourish. Already, people from out of state who have been diagnosed with a terminal illness — something very loosely defined — are traveling to Oregon to find a death doctor willing to help make themselves dead in just over two weeks. From the daily mail story :

Oregon has become America’s first ‘death tourism’ destination, where terminally ill people from Texas and other states that have outlawed assisted suicide have started travelling to get their hands on a deadly cocktail of drugs to end their lives, DailyMail.com can reveal.

In the liberal bastion Portland, at least one clinic has started receiving out-of-staters who have less than six months to live and meet the other strict requirements of the state’s Death with Dignity (DWD) law.

Dr Nicholas Gideonse, the director of End of Life Choices Oregon, recently told a panel that he was advising terminally ill non-residents on travelling to Oregon to end their lives, despite a legal gray area.

Remember, suicidal people who qualify for assisted suicide are not usually offered prevention, meaning some suicidal people receive efforts to save their lives while others are abandoned to facilitation.

Activists also promised that assisted suicide would only occur in the context of a close doctor/patient relationship. But Oregon permits doctor-shopping. If one doctor says no, suicidal patients can merely ask an advocacy group to recommend an ideologically predisposed doctor willing to prescribe death. And suicide prescribers don’t even need to practice in the specialty that treats the patient’s underlying medical condition.

Meanwhile, in Other States

Other states are also loosening “strict guidelines.” For example, Vermont permits virtual assisted suicide, meaning the consultation can be over Zoom or Skype. California has attempted to compel doctors to participate in the assisted-suicide process — after promising MDs, in order to get the law passed, that they would not have to do any of that. The new anti-conscience law is on hold after a lawsuit. Other states where assisted suicide has been legalized have similarly loosened waiting times and procedures.

The ultimate goal — or, at least, the consequence — of allowing assisted suicide/euthanasia is death on demand. Some jurisdictions are getting there faster — Germany, Belgium, the Netherlands, and Canada — and some slower, such as Oregon, Vermont, California, and Colorado. But that tide only flows in one direction.








Sunday 5 February 2023

On succession in the Ottoman empire.

<iframe width="932" height="524" src="https://www.youtube.com/embed/OEzS8D4IidA" title="Sultanate of Women in the Ottoman Empire DOCUMENTARY" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> 

Saturday 4 February 2023

OOL Science is going backwards?

 James Tour: The Goalposts Are Racing Away from the Origin-of-Life Community


On a new episode of ID the Future distinguished nanoscientist James Tour explains to host Eric Metaxas why the origin-of-life community is further than ever from solving the mystery of life’s origin, and how the public has gotten the false impression that scientists can synthesize life in the lab. Tour explains that origin-of-life scientists aren’t even close to intelligently synthesizing life from non-life in the lab. The problem, Tour says, is that some leading origin-of-life researchers give the impression they are right on the cusp of solving the problem.

Not so, Tour says. He offers the analogy of someone claiming, in the year 1500, that he has the know-how to build a ship to travel to the moon, when no one yet knows even how to build an airplane, car, or car engine. Tour says that if he took a cell that had just died a moment before and asked top origin-of-life researchers to engineer it back to life, they couldn’t do it. They’re not even close to being able to do it. And yet all the ingredients, all the building blocks of life are right there, all in one place, in the right proportions. And not only can scientists not engineer those ingredients back to life, they still can’t synthesize even a fraction of the building blocks essential to cellular life, despite decades and millions of dollars poured into the problem. And yet they assume that purely blind material processes turned prebiotic chemicals into all the key building blocks, 

Building blocks, and then mindlessly engineered those into the first self-reproducing cell on the early Earth.

There are no models that would make such a scenario plausible. And the more we learn about cellular complexity, the harder the problem gets. Indeed, as Tour puts it, origin-of-life research is like moving down a football field in nanometer increments while the goalposts are racing away. What’s left is only the dogmatic assumption among origin-of-life researchers that the first life must have appeared on Earth purely through blind material forces. Tour has made it his mission to show the broader scientific community and the public that the emperor has no clothes. Not surprisingly, the origin-of-life community has not responded with heartfelt gratitude. Hear more of Tour’s argument and learn what kind of blowback he has experienced. Download the podcast or listen to it here

From conspiracy theory to Just plain conspiracy?

<iframe width="932" height="524" src="https://www.youtube.com/embed/tX92Y1KK0aE" title="Did 'every conspiracy theory' about Twitter turn out to be... true?" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> 

Plastic recycling pros and cons.


Another black Friday for Darwinism courtesy of the fossil record.

Fossil Friday: The Abrupt Origins of Treeshrews (Scandentia) and Colugos (Dermoptera)


This Fossil Friday features the small mammal Eudaemonema webbi from the Late Paleocene of Western Canada (Scott 2010) as we look today into the origins of two orders of Southeast Asian placental mammals, the treeshrews (Scandentia) and colugos (Dermoptera). The 23 living species of treeshrews belong to only two families (Ptilocercidae and Tupaiidae) and look like a mixture of a shrew and a squirrel. The two living genera and species of colugos belong to the single family Cynocephalidae (= Galeopithecidae) and look like a mixture of a lemur and a flying squirrel, which is why they have sometimes been called flying lemurs. They are cat-sized arboreal animals that can glide more than 100 meters from tree to tree. 

Treeshrews and colugos not only look like chimeras of different beasts, but indeed both proved to be notoriously difficult to place in the system of animals. Treeshrews were at times associated with genuine insectivores (Wagner 1855, Haeckel 1866), “menotyphlan” insectivores (esp. Macroscelidea) (Gregory 1910), and primates (Carlsson 1922, Simpson 1945, Le Gros Clark 1924, 1926, 1971, Luckett 1980, Novacek 1980, Sargis 2004). They were later removed from primates (Van Valen 1965, 1967, McKenna 1966, Szalay 1968, 1969) and recognized as a distinct order of placental mammals (Butler 1972), related to extinct Leptictida (Van Valen 1965, 1967) or of unclear relationship (Luckett 1980). This situation was even worse with colugos (Wible 1993), about which the famous German zoologist Alfred Brehm (1883) remarked in his animal encyclopedia Brehms Thierleben:

Linné stellt sie zu den Halbaffen, Cuvier zu den Fledermäusen, Geoffroy zu den Raubthieren, Oken zu den Beutelthieren und Peters endlich, wohl mit Recht, zu den Kerbthierfressern, deren Reihe sie eröffnen. Entsprechend der Unsicherheit der Forscher heißt die bekannteste Art unter anderen noch geflügelter Affe, Flattermaki, fliegende Katze, wundersame Fledermaus usw.

[Linné placed them with lemurs, Cuvier with bats, Geoffroy with carnivores, Oken with marsupials and Peters last but not least, likely correct, with insectivores right at their base. Corresponding to this uncertainty of the scientists the most common species has also been called winged monkey, flying lemur, flying cat, or wondrous bat, etc.] 

Today, both orders are generally believed to be close relatives of primates in a group called Euarchonta (e.g., Sarich & Cronin 1976, Cartmill & MacPhee 1980, Adkins & Honeycutt 1991, Liu & Miyamoto 1999, Waddell et al. 1999, 2001, Liu et al. 2001, Murphy et al. 2001a, 2001b, Springer et al. 2003, 2004, 2007, Kemp 2005, Rose 2006, Kriegs et al. 2007, Halliday et al. 2015; contra Arnason et al. 2002). Together with the Glires (rodents, hares, rabbits, and pikas) the euarchontans belong to one of the four major supergroups (cohorts) of placental mammals, which has rather unimaginatively been named Euarchontoglires (Murphy et al. 2001a, 2001b) or more rarely Supraprimates (Waddell et al. 2001, Kriegs et al 2007).

As all too often in phylogenetics the relationships of treeshrews and colugus within Euarchotoglires are still a matter of considerable scientific controversy (Knyshov et al 2022:

Some scientists think that treeshrews are closer related to colugos in a group called Sundatheria (Adkins & Honeycutt 1991, Liu & Miyamoto 1999, Asher et al 2009, Liu et al. 2001, Murphy et al. 2001b, Sargis 2002d, 2004, Eizirik et al. 2004, Olson et al. 2005, Marivaux et al. 2006, Bloch et al. 2002, 2007, 2016, Sánchez-Villagra et al. 2007, Nie et al. 2008, Asher & Helgen 2010, Silcox et al. 2010, 2017, Chester and Bloch 2013 , O’Leary et al. 2013, Chester et al. 2015, 2017, 2019, Naish 2015, Nowak 2018, Upham et al. 2019) or Paraprimates (Springer et al. 2003, 2004, 2007). Other scientists rather believe treeshrews represent the sister group to a clade of colugos and primates called Primatomorpha (Beard 1991, 2006, Kalandadze & Rautian 1992, Murphy et al. 2001a, Waddell et al. 2001, Janečkaet al. 2007, Sargis 2007, Martin 2008, Perelman et al. 2011, Ni et al. 2013, 2016, Lin et al. 2014, Mason et al. 2016, Esselstyn et al. 2017, Boyer et al. 2018, Phillips & Fruciano 2018, Morse et al. 2019, Scornavacca et al. 2019, Zhang et al. 2019, Seiffert et al. 2020, Zachos et al. 2020, Knyshov et al. 2022, Osozawa and wakabayashi 2023). But see Sargis (2002d, 2004), who cautioned that the support for Primatomorpha is considerably reduced when the primitive treeshrew Ptilocercus is included in the analyses. Why am I citing this boring list of all these publications? Simply to make the point very clear that the two alternative hypotheses arguably are supported by numerous independent studies based on many different data sets, but they cannot both be right. But it gets much worse.

Still other authors explicitly or implicitly suggested that treeshrews could be sister to primates only (Gregory 1910, Carlsson 1922, Le Gros Clark 1924, 1926, 1971, Simpson 1945, Simons 1964, McKenna 1966, Wible & Covert 1987, Kay et al. 1992, Novacek 1992, Kupfermann et al. 1999, Wible et al. 2007, Song et al. 2012, Kumar et al. 2013, Lin et al. 2014, Zhou et al 2015), even though some of these studies did not include colugos in their analyses. A few scientists suggested treeshrews as the sister group of Glires+Primatomorpha together (Kumar et al. 2013, Esselstyn et al 2017, Knyshov et al. 2022), or even suggested them to be the sister group of Glires (Meredith et al. 2011, Zhou et al. 2015, Foley et al. 2016; but see Lin et al. 2014), or of Lagomorpha (Bailey et al. 1992), or of Rodentia (Arnason et al. 2002), which would all imply that Euarchonta and Sundatheria would not be valid clades (also see Madsen et al. 2001). Finally, some studies recovered Dermoptera nested within primates as sister group of Anthropoidea (Murphy et al 2001a, Arnason et al. 2002, contra Schmitz et al. 2002 and Schmitz & Zischler 2003).

Originally, scientists believed that the order of bats (Chiroptera) belongs to the same supergroup as colugos and primates (Archonta sensu lato) (e.g., Gregory 1910, McKenna 1975, Wible & Covert 1987, Novacek 1992, Szalay & Lucas 1993, Kupferman et al 1999). Prior to the advent of molecular phylogenetics most scientists believed that bats and colugos belong to a common clade that was named Volitantia (Szalay & Drawhorn 1980, Novacek & Wyss 1986, Wible & Covert 1987, Wible & Novacek 1988, Baker et al. 1991, Novacek 1992, Simmons 1993, 1995, Szalay & Lucas 1993, 1996, Wible 1993, Stafford & Thorington 1998, Bloch & Silcox 2001, Silcox 2001a, Sargis 2002d, 2002e, 2007, Silcox et al. 2005; also see Halliday et al. 2015: fig. 1). This was based on a substantial number of anatomical similarities, mainly related to gliding/flying adaptations, but also including the morphology of the teeth and the ear capsule. Based on features of penis morphology Smith & Madkour (1980) suggested a clade of only Dermoptera + Megachiroptera as sister group of primates, with tree shrews and Microchiroptera as more basal outgroups. The results from modern phylogenomics did not agree at all and consequently bats were ultimately removed from archontans (Asher and Helgen 2010) and are now considered as basal members of completely different supergroup called Laurasiatheria. Prior to this recognition there were some wild theories seriously discussed, such as the diphyly of bats and the “fallen angel” hypothesis (Pettigrew et al. 1989; contra Bailey et al. 1992), which suggested that primates derived from a gliding common ancestor with colugos and megabats. Nothing seems impossible or forbidden in Darwinian fantasy land, except anything that smacks of purposeful development and design. 

So, let’s focus on the hard evidence, and what could be harder than petrified fossils? Unfortunately, the fossil record of treeshrews and colugos is quite sparse, but it still provides some useful information about their origins. This evidence strongly contradicts the Darwinian predictions from molecular clock studies, which suggested that colugos should have branched from the Primatomorpha lineage about 79.6 million years ago, and treeshrews even earlier about 86.2 million years ago during the Cretaceous “golden age” of dinosaurs (Janecka et al 2007)

 Roberts et al. (2011: fig. 3) accordingly suggested that the two families of crown group treeshrews already diverged in the Paleocene about 60 million years ago. Foley et al. (2016) proposed a similar estimate with the lineages of treeshrews originating 76.94 million years ago and colugos 75.47 million years ago. Of course, the fossils tell a very different story that is better agreeing with recalibrated datings of a “soft explosive model of placental mammal evolution” (Phillips & Fruciano 2018, also see Upham et al. 2019: fig. 4), which has all the orders appearing abruptly during a brief window of time in the early Paleogene. This is exactly what we heretical ID proponents always said.

The Fossil Record of Treeshrews

It is worth noting that not only the affinity of treeshrews and the intraordinal relationships among the living species of treeshrews proved to be a contentious issue (Olson et al. 2004, 2005, Roberts et al. 2011), but even the very number of species itself, which for example varied in the genus Tupaia between 11 and 32 species (Olson et al. 2005). The fossil record of treeshrews is relatively poor (Sargis 1999, 2004, Olson et al. 2004, 2005, Rose 2006). The oldest fossil record of the order Scandentia is Eodendrogale parvum that was described by Tong (1988), based on a few isolated teeth from the Middle Eocene (48.6-37.2 mya) of Xichuan in China. A few extinct members of modern treeshrews have been described from Miocene localities in East Asia, such as Prodendrogale and Tupaia storchi from the Late Miocene (11.1-4.9 mya) of Yunnan in China, and Palaeotupaia and Sivatupaia from the Miocene and Pliocene (23.03-5.33 mya) Śiwalik deposits in India and Pakistan (Dutta 1975, Chopra & Vasishat 1979, Chopra et al. 1979, Jacobs 1980, Qiu 1986, Sargis 1999, 2004, Ni & Qiu 2012, Sehgal et al. 2022), as well as Tupaia miocenica from the Miocene (ca. 18 mya) of Thailand (Mein & Ginsburg 1997). The oldest crown group treeshrew is Ptliocercus kylinfrom the Earliest Oligocene (ca. 34 mya) of the Yunnan Province in China (Li & Ni 2016), which has been interpreted as evidence that treeshrews are slowly evolving “living fossils.” The press release about the discovery also mentioned that morphological comparisons and phylogenetic analysis support the long-standing idea that the pen-tailed treeshrews of the living relict species Ptilocercus lowii “are morphologically conservative and have probably retained many characters present in the common stock that gave rise to archontans, which include primates, flying lemurs, plesiadapiforms and treeshrews” (Chinese Academy of Sciences 2016; see also Sargis 2002a, 2002b, 2002c, 2002d, 2007 and Olson et al. 2005). That seems to be a rather bold conclusion considering the above-mentioned fact that scientists cannot even agree on the phylogenetic affinities of treeshrews in the first place.

Some fossil taxa that were previously assigned to the relationship of treeshrews have meanwhile been debunked: Following Lemoine (1885), the extinct Adapisoriculidae were considered as fossil Tupaiidae by Simpson (1928), Van Valen (1965, 1967) and Szalay (1968). Most later studies rather considered them to be lipothylan insectivores (e.g., Rose 2006), but Smith et al. (2010) made a strong case for a position among basal Euarchonta. However, more recent studies even disputed their position within crown group placental mammals (Goswami et al. 2011, Manz et al. 2015). Matthew (1918) provisionally listed the Eocene genus Entomolestes as a possible fossil Tupaiidae, but it was later recognized as a close relative of erinaceoid insectivores (= hedgehogs) by McKenna (1966) and Novacek et al. (1985). McKenna (1966) also considered other suggested candidates as very doubtful, such as the genera Macrocranion (likely a hedgehog as well) and the Paleocene mixodectid Eudaemonema that we featured in this article. The latter genus was considered as a Plagiomenidae within Dermoptera by KcKenna (1960) and McKenna & Bell (1997), which was arguably corroborated by the cladistic analysis of Ni et al. (2013, 2016 SI). The Paleogene family Anagalidae was considered as closely related to Tupaiidae by Simpson (1931), but this was strongly disputed by McKenna (1966). Anagalids are today considered as closer related to Glires within a clade Gliriformes, which we will look into more detail next week’s Fossil Friday.

The Fossil Record of Colugos 

The two species of the extinct genus Dermotherium from the Eocene and Oligocene of Thailand, Myanmar, and Pakistan are the oldest and only definitive fossil dermopterans (Ducrocq et al. 1992, Marivaux et al. 2006). The older of these two species is Dermotherium major from the Late Eocene (37.2-33.9 mya) of the Krabi Basin in Thailand. Stafford & Szalay (2000) cautioned that this purported dermopteran fossil is poorly preserved and of little help, but the affinity to modern Dermoptera was corroborated by Silcox et al. (2005) and Smith et al. (2010). Apparently they were already quite similar to modern colugos and were therefore included in the same family Cynocephalidae together with the two living genera, which are by the way much more distinct than was often believed (Stafford & Szalay 2000). Some alleged fossil dermopterans have been reported from Neogene localities in Africa (see PaleoDB), but these seem to be only brief records in obscure checklists, which have been totally ignored in the technical literature on dermopteran evolution. Several enigmatic Paleogene groups of small insectivorous mammals have also been associated with Dermoptera (Anonymous 2023) and merit a closer look.

Plagiomenidae 

This extinct family is known exclusively from the Paleocene and Early Eocene of North America. According to Bloch et al. (2007) they belong to Sundatheria, together with colugos and treeshrews. Several authors had more specifically attributed this family to Dermoptera (Matthew 1918, Simpson 1937, 1945, Romer 1966, Van Valen 1967, Szalay 1969, Rose 1973, 1975, 2006, Krishtalka & Setoguchi 1977, Rose & Simons 1977, Bown & Rose 1979, Novacek 1980, Carroll 1988, Gunnell 1989, McKenna 1990, Ducrocq et al. 1992, McKenna & Bell 1997, Silcox 2001a, 2001b, Agusti & Antón 2002, Kemp 2005). Such a position was also confirmed by the cladistic studies of Ni et al. (2013, 2016 SI), Halliday et al. (2015), and Morse et al. (2019). On the other hand, MacPhee et al. (1989) considered plagiomenids in his seminal study as eutherians of uncertain affinity, which was concurred by Marivaux et al. (2006). Szalay& Lucas (1993) also cautioned that the affinity of Plagiomenidae needs reexamination, and Dawson et al. (1993) remarked:

The phylogenetic position of Plagiomenidae with respect to other mammals is also not yet clear. Earlier interpretations of plagiomenids as members of the order Dermoptera have been questioned on several grounds (MacPhee et al. 1989, Beard 1990, Kay et al. 1990). At present, we follow MacPhee et al. (1989) in classifying these animals as placental mammals of unknown ordinal affinities.

A lot of this uncertainty concerning the affinities of Plagiomenidae, and the other taxa of fossil small mammals mentioned below, comes from the fact that the fragmentary fossil evidence is mostly restricted to dental characters. Yapuncich et al. (2011) reported the first dentally associated skeleton of Plagiomenidae, which surprisingly did not exhibit any arboreal adaptations, so that the authors concluded that “on functional morphological and cladistic grounds we consider Plagiomenidae to be more likely allied with laurasiatheres than dermopterans or other euarchontans.” Oopsy, there goes almost a hundred years of previous research down the drain. In this context, it is interesting that more recent studies of living treeshrews suggested that the arboreal adaptations already belonged to the archontan ground plan and thus do not suggest a uniquely primate relationship of treeshrews (Godinot 2017).

Anyway, What About the Age of Plagiomenids?

Three species in the genus Plagiomene and Planetetherium mirabile are known from Late Paleocene and Early Eocene (56.8-50.3 mya) localities in North America (Matthew 1918, Simpson 1928). The genus Thylacaelurus, which was described from the Middle Eocene Kishenehn Formation in Canada (Russell 1954), has also been reported from the Paleocene (61.7-56.8 mya) Paskapoo Formation in Alberta, Canada (Fox 1990), but only in a list without any description, figure, or justification. McKenna (1990) included three more genera (Tarka, Tarkadectes, and Ekgmowechashala) from the Middle Eocene and Oligocene of northwestern USA, all classified in a separate plagiomenid subfamily Ekgmowechashalinae. This subfamily was recently recognized as a family of adapiform primates by Ni et al. (2016). Another genus and species Ellesmene eureka has been described from Early Eocene (55.8-50.3 mya) of the Arctic region of Ellesmere Island (Dawson et al. 1993), which had a subtropical climate and vegetation during this period of earth history, but still a polar light regime that made it to a very unique environment that was also colonized by other early Primatomorpha like the plesiadapiform genus Ignacius (Miller et al. 2023).

There are two more taxa that may belong to Plagiomenidae:

Worlandia inusitata was described from the Paleocene (Clarkforkian, 56.8-55.8 mya) of Wyoming and considered to be closely related to plagiomenids like Planetetherium in a subfamily Worlandiinae (Bown & Rose 1979). This was accepted by McKenna & Bell (1997)and Rose (2006), and the cladistic study of Paleocene mammals by Halliday et al. (2015)supported its place within Plagiomenidae.

The genus Elpidophorus was described by Simpson (1927, 1937) with two species from the Paleocene (61.7-56.8 mya) of Montana, Wyoming, and Alberta (Fox 1990). It was originally described by Simpson (1927) as a carnivoran, but was attributed to Mixodectidae by most early workers (Simpson 1936, 1937, 1945, Van Valen 1967, Szalay 1969). McKenna (1960) begged to differ and considered Elpidopherus as a plesiadapiform stem primate. This genus was later transferred from Mixodectidae to Plagiomenidae and considered as earliest putative dermopteran by Rose (1975). This was concurred by several subsequent studies (Gunnell 1989, Fox 1990, McKenna & Bell 1997, and Halliday et al. 2015), while Scott et al. (2013) again treated this genus as Mixodectidae. Ni et al. (2013 SI) placed it again with Plagiomenidae in the stem group of Dermoptera, far removed from Mixodectes. So, it looks like Elpidophorus could be the oldest plagiomenid (Rose 2006) or not, related to dermopterans or not.

Mixodectidae

The Mixodectidae represent another extinct family from the Paleocene of North America and are almost exclusively known from their dentition (Simpson 1937, Szalay 1969, Gunnell 1989, Rose 2006, 2008). They have been linked previously with rodents, insectivores (Gunnel 1989), and primates (see McKenna 1966, Szalay 1969, Silcox 2001a: fig. 6.4, and Scott 2010), as well as attributed to (eu)archontans with an affinity to Plagiomenidae and Dermoptera (Simpson 1937, Van Valen 1967, Carroll 1988, Beard 1989, McKenna 1990, Szalay & Lucas 1993, 1996, Silcox et al. 2005, Gunnell & Silcox 2008, Rose 2006, 2008, Scott 2010). Szalay (1968, 1969) already reviewed the checkered history of the taxonomic allocation of mixodectids. He rejected a close relationship with plagiomenids and dermopterans and instead considered mixodectids and adapisoriculids as close relatives of treeshrews. MacPhee et al. (1989) affirmed a sister group relationship of Mixodectidae with Plagiomenidae (also see Rose & Simons 1977, McKenna 1990, Rose 2008), but considered them as Eutheria incertae sedis. Agusti & Antón (2002) considered mixodectids as “archaic placental mammals”. Some more recent studies indeed rather considered mixodectids to belong to the plesiadapiform stem group of Primatomorpha (Ni et al. 2013, 2016 SI) than that of Dermoptera, but Ni et al. (2013, 2016) placed the putative mixodectid Eudaemonema not together with Mixodectes but in the stem group of Dermoptera. Some dental similarities of Mixodectidae with recent colugos have been interpreted as convergences (Scott 2010). Well, that does not help much.

Micromomyidae

Micromomyidae was an extinct family of diminutive euarchontan mammals that lived from the Late Paleocene to the Early Eocene of western North America (with a questionable record from the Eocene of China; Tong & Wang 2006). Because postcranial material was interpreted in terms of an adaptation to gliding behaviour, this family has also been linked with Dermoptera (e.g., Beard 1989, 1993a, 1993b). However, this interpretation as mitten-gliders was arguably refuted by Bloch et al. (2007) and Boyer & Bloch (2008). More recently micromomyids were rather assigned to the plesiadapiform grade in the stem group of primates (Silcox 2001a, Silcox et al. 2005, 2010, 2017, Rose 2006, Bloch et al. 2007, Chester & Bloch 2013, Chester et al. 2015, 2017, 2019, Bloch et al. 2016) or of Primatomorpha (Ni et al. 2013 SI). The cranial inflation shared with dermopterans could more likely be a convergence (Bloch et al. 2016).

Microsyopidae

This extinct family also existed in the Paleocene and Eocene of North America. It has been suggested as member of the stem group of Sundatheria (treeshrews and colugos) by the cladistic study of Bloch & Silcox (2006), but recovered as stem dermopterans by Ni et al. (2013, 2016 SI). Beard (1989) also placed them with plesiadapiforms and Dermoptera. Szalay & Lucas (1993) affirmed an inclusion in Archonta but remained undecided about the specific affinities. However, more recent cladistic studies recovered this family as plesiadapiform-grade stem primates (Silcox et al. 2005, 2010, 2017, Chester & Bloch 2013, Chester et al. 2015, 2017, 2019, Bloch et al. 2016). Indeed, the majority of experts had long considered microsyopids as close relatives of primates or even included them as basal primates (McKenna 1960, 1966, Van Valen 1967, Szalay 1969, MacPhee & Cartmill 1986, Gunnell 1989, Silcox 2001a, and Rose 2006).

Plesiadapiformes: To Be or Not to Be a Glider

As we already discussed in my Fossil Friday article on the origin of primates (Bechly 2022), some scientists considered the Paleogene mammal order of Plesiadapiformes as possible close relatives of colugos (Dermoptera) (Kemp 2005, Silcox 2014, Godinot 2017). This was mainly based on the shared reduction of the internal carotid artery (Kay et al. 1990, 1992) and some skeletal characters that were thought to be indicative of an adaptation to gliding in paromomyid genera like Phenacolemur and Ignacius (Beard 1989, 1990, 1993a, 1993b, Martin 1990, McKenna & Bell 1997). Szalay & Lucas (1993) found homologies in the postcranial skeleton. As plesiadapiforms include some of the oldest known placental mammals at all (see Bechly 2022), this could be a very remarkable finding concerning the early origin of the colugo lineage. However, this proposed relationship was seriously questioned by many other experts (Krause 1991, Ducrocq et al. 1992, Szalay & Lucas 1993, 1996, Wible 1993, Van Valen 1994, Stafford & Szalay 2000, Boyer et al. 2001, Bloch & Silcox 2001, 2006, Sargis 2002d, Bloch & Boyer 2002a, 2002b, 2003, Silcox 2001a, 2001b, 2003, Rose 2006, Bloch et al. 2007, and Boyer & Bloch 2008). Simons (1964) had already cautioned that the similarities between Plesiadapis and colugos “could have been acquired independently rather than from a common ancestor.” Also, the cladistic studies by Bloch et al. (2007, 2016), Janečka et al. (2007), and Chester et al. (2015, 2017, 2019), found no evidence supporting a dermopteran relationship of plesiadapiforms and instead recovered them as basal grade in the stem group of primates. But phylogenetics would not be phylogenetics if there would not be an even more recent and more comprehensive cladistic analysis that again confirmed the close relationship of some plesiadapiforms (incl. the putative primate Altiatlasius, also see Ni et al. 2016 SI) and colugos (Morse et al. 2019), and even Boyer et al. (2018: fig. 9) again clustered some plesiadapiforms (incl. the type genus Plesiadapis) with Dermoptera. Sigh, what a frustrating mess indeed!

Last but not least, there is an extinct family Placentidentidae with the single genus and species Placentidens lotus from the Early Eocene (Ypresian, 55.8-48.6 mya) of France, which was attributed to Dermoptera by some scientists (Russell et al. 1973, Carroll 1988, Ducrocq et al. 1992). Rose & Simons (1977) considered Placentidens as a possible Plagiomenidae and thus dermopteran too. However, this genus was more recently shown to belong to the extinct family Nyctitheriidae in the insectivore suborder Soricomorpha (Beard & Dawson 2009), thus related to the true shrews and moles in the totally different supergroup Laurasiatheria. Well, unless you follow Smith et al. (2010), who said that “the purported euarchontan Paleogene family Nyctitheriidae (Hooker 2001) is closer to Scandentia than to adapisoriculids.” But wait, Manz et al. (2015) again found that Nyctitheriidae is related neither to Euarchonta nor to Adapisoriculidae, but to Eulipotyphla, thus true insectivores. Is there anything the experts can agree upon beyond trivial facts like those beasts being extinct small mammals? They all look at the same fossil evidence and constantly come to totally different conclusions. Even as a paleontologist I have to admit that calling this a real scientific discipline seems like an insult to hard sciences like physics or chemistry or molecular biology. To an outsider it must rather resemble a kind of Rorschach test with fossils instead of ink blotches, and all that matters seems to be guesswork, speculation, and opinion.

Long story short: Irrespective of any of the numerous uncertainties, treeshrews and colugos definitely appeared abruptly in the Paleogene. The fossil record shows nothing even remotely resembling a gradual origin of these orders in the Cretaceous that was predicted by Darwinian molecular clock studies. This is just another instance of the countless empirical failures of the theory, more or less ignored by mainstream evolutionary biology.

Next Fossil Friday we will look into the origins of the orders of rodents and Lagomorpha, which form the second major clade (Glires) within the supergroup of Euarchontoglires. I hope that will not be as confusing and wearying as today’s topic.















The most creative minds in Hollywood are the accountants?

<iframe width="932" height="524" src="https://www.youtube.com/embed/Gk3J0l8sbiQ" title="How Hollywood Studios Manage to Lose Money on Movies That Make a Billion Dollars" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> 

Friday 3 February 2023

The fall of Rome: silicon valley edition.

 <iframe width="932" height="524" src="https://www.youtube.com/embed/QXZmEOTiRvM" title="How Silicon Valley became a dystopia" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>

Where science meets the gospel?

 The Science of Kindness


The warm feeling of wellbeing that washes over you when you've done something kind isn't just in your head.

It's in your brain chemicals, too.

Acts of kindness can release hormones that contribute to your mood and overall wellbeing. The practice is so effective it's being formally incorporated into some types of psychotherapy.

"We all seek a path to happiness," says Dr. Waguih William IsHak, a professor of psychiatry at Cedars-Sinai. "Practicing kindness toward others is one we know works."

Kindness is chemical

Most research on the science behind why kindness makes us feel better has centered around oxytocin.

Sometimes called "the love hormone," oxytocin plays a role in forming social bonds and trusting other people. It's the hormone mothers produce when they breastfeed, cementing their bond with their babies.

Oxytocin is also released when we're physically intimate. It's tied to making us more trusting, more generous, and friendlier, while also lowering our blood pressure.

Acts of kindness can also give our love hormone levels a boost, research suggests.

Dr. IsHak says studies have also linked random acts of kindness to releasing dopamine, a chemical messenger in the brain that can give us a feeling of euphoria. This feel-good brain chemical is credited with causing what's known as a "helper's high."

In addition to boosting oxytocin and dopamine, being kind can also increase serotonin, a neurotransmitter that helps regulate mood.

Kindness as a treatment for pain, depression, and anxiety

What we know about the science behind acts of kindness is influencing how we treat certain health conditions, Dr. IsHak says.

Studies are investigating if oxytocin can be beneficial in treating some conditions. The hormone is a protein and cannot simply be taken as a pill. It's being studied in injection and nasal spray forms.
Mindfulness-based therapy is becoming increasingly popular for treating depression, anxiety, and other mental health conditions. The therapy is built on mindfulness meditation, documenting your gratitude, and acts of kindness. People being treated in a mindfulness-based therapy program incorporate acts of kindness into their daily routines.
Helping others is also believed to increase levels of an endorphin-like chemical in the body called substance P, which can relieve pain, Dr. IsHak says.

Put kindness on repeat

The good news is that a simple act of kindness can reward our bodies and minds with feel-good chemical substances.

However, the effect isn't lasting. A single act of kindness isn't going to carry you through several days—or even hours.
"The trick you need to know: Acts of kindness have to be repeated," Dr IsHak says.
"Biochemically, you can't live on the 3-to-4-minute oxytocin boost that comes from a single act."
That's why kindness is most beneficial as a practice—something we work into our daily routine whether in the form of volunteer work, dropping coins into an expired parking meter, bringing a snack to share with your officemates, or holding the elevator for someone.
"The rewards of acts of kindness are many," says Dr. IsHak. "They help us feel better and they help those who receive them. We're building better selves and better communities at the same time."

Ps. Acts ch.20 v. 35 NIV"In everything I did, I showed you that by this kind of hard work we must help the weak, remembering the words the Lord Jesus himself said: ‘It is more blessed to give than to receive.’ "

Why the Origin of Life remains design deniers' bane.

<iframe width="932" height="524" src="https://www.youtube.com/embed/Eefw0Dnv_Ic" title="The Mystery of Life's Origin -- Dr. Stephen Meyer" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> 


Ps. "Chemicals do not evolve." James Tour.

That puts the case against abiogenesis in a nutshell.

A design denier in his own words.

 <iframe width="932" height="621" src="https://www.youtube.com/embed/J249urOZyo8" title="Intelligent Design Creationism" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>


Ps. We believe in steel manning our opponents position not straw manning it.

Yet more re: the thumb print of JEHOVAH; human body edition.

<iframe width="932" height="524" src="https://www.youtube.com/embed/KP15mW262PQ" title="Cascading Problems" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> 

The hope of the Resurrection resides in every human heart

The Fantasy of Living Forever in a Computer

Wesley Smith  

Transhumanists pursue the dream of immortality by hoping to Upload their minds into computers — as if the mimicking software would be them. No, it would be a computer program, nothing more. They would still be dead and gone.


And here’s another somewhat less ambitious approach to the same goal. Apparently a company is developing technology that would allow you to speak to loved ones after you shuffle off this mortal coil. From the Vice story

The founder of a top metaverse company says that the fast-moving development of ChatGPT has pushed the timeline for one of his most ambitious and eccentric projects up by a matter of years. In an interview with Motherboard, Somnium Space’s Artur Sychov said a user has started to integrate OpenAI’s chatbot into his metaverse, creating a virtual assistant that offers a faster pathway for the development of “Live Forever” mode, Sychov’s project to allow people to store the way they talk, move, and sound until after they die, when they can come back from the dead as an online avatar to speak with their relatives.

Leaving aside the narcissistic aspect of people continually having themselves recorded, “they” wouldn’t be “back.” The deceased would still be dead. The AI reproduction would merely be a more sophisticated remembrance of the dearly departed than is available now, akin to a precious photo or video, nothing more.

Immortality cannot be attained in the corporeal world. If eternal life is attainable, it will be found by working on one’s soul in faith, not by developing ever-more-advanced AI computers.



Reality: a brief history.

<iframe width="932" height="524" src="https://www.youtube.com/embed/9If-K9R3Ka4" title="Where Are All The Hidden Dimensions?" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> 

Why does the Ostrich have four kneecaps? Well don't ask Darwinists.

Kneecaps: “Ultimately, there might not be a simple pattern”


Why do ostriches have four, rather than two, kneecaps? A new study has found several possible biomechanical advantages. Perhaps they allow the ostrich to straighten its leg more quickly, helping the animal to run quickly. Perhaps the lower kneecap protects the joined tendons crossing the front of the knee. One reason that does not help to explain the ostriches four kneecaps is evolution. That is because this unique design is not predicted, and makes no sense, on the theory. As one article admits: “Bizarrely, many of the ostrich’s closest relatives don’t have kneecaps at all.” Similarities across the species were a strong argument for evolution, but in fact biology is full of unique designs, particular to one or a few species. Such one-off, “lineage specific,” designs are “bizarre” for evolutionists. So while there are design reasons for the ostriches four kneecaps, on the ordinary view of the evolution of each being, we can only say that so it is. 

Thursday 2 February 2023

On the Darwinian Gestapo?

 NASA Persecution Case Reaches a Grim Anniversary


We’ve missed — but not by much — an anniversary. Ten years ago, our friend and esteemed Evolution News contributor David Coppedge reached the end of his road with NASA’s Jet Propulsion Laboratory, where he had held an important position with the Cassini mission to Saturn. JPL demoted and finally terminated him. What was David’s offense? He shared information about intelligent design with willing colleagues. A judge ruled against him in his lawsuit. I was present for the trial and reported on it here at the time. 

So it’s ten years now since Coppedge was compelled to accept that his egregious persecution would be allowed to stand, uncorrected. As David wrote to me recently:

Ten years ago, in January 2013, without explanation, a lone judge ruled against my case against JPL on all 10 counts of discrimination and retaliation regarding intelligent design. Three years of hard work on a widely publicized case went down the drain that day, January 16, a week after I had been diagnosed with cancer. 

I want to assure everyone that life is good for me now; a major surgery in February 2013 was very successful (profound thanks to City of Hope Hospital), and the remaining traces are treatable with monthly injections. I have good quality of life, freedom to eat and travel, and opportunities to work on worthwhile projects like writing for Evolution News

All About Intelligent Design

As he also notes, “Two key documents show that the dispute was about intelligent design, not about work habits, personality, manner, or anything else.”


David Coppedge worked for 14 years as an information technology specialist and system administrator for the Cassini mission to Saturn, operated by the Jet Propulsion Laboratory (JPL) in California under a contract with NASA. Cassini was regarded by many as the most ambitious interplanetary exploration mission ever launched. Coppedge served as the mission’s “Team Lead” System Administrator for nine years. In this position, he and his team managed the computers that sent and received messages from the Cassini spacecraft. Coppedge was a valued JPL employee who received positive performance reviews.

That is, until his supervisors censored, disciplined, demoted, and ultimately terminated him after he shared ideas that superiors labeled “unwelcome” and “disruptive.” What was so disruptive that it entailed punishing a long-standing and faithful employee? Coppedge occasionally loaned Illustra Media DVDs about intelligent design to co-workers who expressed an interest in watching them (Coppedge served as a member of Illustra Media’s board of directors). After one co-worker complained, a supervisor called Coppedge into a meeting where Coppedge says he was berated for believing in intelligent design and warned that he was not allowed “to discuss religion or politics with anyone in this office or it will be difficult for you to maintain employment in this organization.” This was despite the fact that other employees according to Coppedge were allowed to freely express their views on a variety of non-work topics. “In fact my own boss, to a captive audience, in our staff meetings each week would show political cartoons, and some of them had a particular political bent to them,” he recalled. Although Coppedge complied with the one-sided gag order, administrators gave him a written warning after a secretive investigation, removed him as Team Lead, and issued a very negative annual review. Believing he was being treated unfairly, he filed an employment discrimination lawsuit against JPL in 2010. The next year JPL terminated him. His discharge looked like blatant retaliation, although JPL maintained otherwise.

Coppedge lost his lawsuit in 2012.

Enforcing the “Consensus”

Look there for all the background on the case that you’ll need to understand what happened and why it matters. As David commented, 

There are frequent lectures at JPL about Darwinian evolution and the origin of life and there are people who will have Darwin fish on their doors, or cartoons mocking intelligent design or conservative politics and things like that. And they get away with it. But I was singled out for having views that differed from the consensus view.

For more information about this noteworthy free speech case, which illustrates how the scientific “consensus” on ID is enforced, you can also listen to the excellent series of reports we released in 2016 on ID the Future. They recount the story in David’s own words.




Every case of anti-ID speech suppression is different, whether the targets are scientists, teachers, students, or others. If you are a target, or feel yourself to be, your best route is to seek guidance via our Help & Advice page at Free Science. 

Another civil war?

"Gay clubs operating in seminaries " claims Pope Benedict from beyond the grave.


The late Pope Benedict XVI has launched a scathing attack on the state of the Catholic Church under Pope Francis – from beyond the grave.

In the book, which was written by Benedict with implicit instructions that it shouldn’t be published until after his death, he claims that there has been a “vast collapse” in priestly formation [training for ministry] under Francis’ tenure, with gay clubs operating in seminaries, particularly in the United States:

“In various seminaries homosexual clubs were formed which acted more or less openly and which clearly transformed the atmosphere in the seminaries.”

Premier Christian News Logo
Set language to British English (UK) Set language to American English (USA)
USA
World
Politics
Church
More
Benedict grave pic two.JPGReuters
'Gay clubs operating in seminaries' claims Pope Benedict from beyond the grave
Tue Jan 24 2023by Donna Birrell
The late Pope Benedict XVI has launched a scathing attack on the state of the Catholic Church under Pope Francis – from beyond the grave.

In the book, which was written by Benedict with implicit instructions that it shouldn’t be published until after his death, he claims that there has been a “vast collapse” in priestly formation [training for ministry] under Francis’ tenure, with gay clubs operating in seminaries, particularly in the United States:

“In various seminaries homosexual clubs were formed which acted more or less openly and which clearly transformed the atmosphere in the seminaries.”



The late Pope goes on to claim that a bishop had allowed seminarians to be shown pornographic films “presumably with the intention of enabling them to resist against behaviour contrary to the faith.”

He goes on to write about a seminary in southern Germany in which candidates for the priesthood and lay students lived together and ate together with married representatives, wives, children and in some cases girlfriends.

Benedict died in December at the age of 95 and is buried in the Vatican. His book, entitled ‘What Christianity Is’ is the latest work by recently deceased Vatican leaders to criticise Pope Francis.

Earlier this month it was revealed that former Vatican treasurer Cardinal George Pell had written an anonymous blog before he died in which he described the leadership of Pope Francis as a “catastrophe”.

The Vatican has not addressed the claims.


The culture war within the culture war?

<iframe width="932" height="524" src="https://www.youtube.com/embed/ruvlgINs70c" title="The Pride Generation with Katie Herzog" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> 

I D is a science starter?

 Socrates in the city :James Tour on nanotech  

Evolution News 

A new ID the Future episode features the first part of a conversation between James Tour and Socrates in the City host Eric Metaxas on Tour’s astonishing work in nanotechnology and on the topic “How Did Life Come into Being?” Tour is the T. T. and W. F. Chao Professor of Chemistry, Professor of Computer Science, and Professor of Materials Science and Nanoengineering at Rice University. He is widely regarded as one of the world’s leading nano-scientists. This event took place at the River Oaks Country Club in Houston, Texas. Here in Part 1, Tour explains some of the inventions coming out of his Rice University lab, including molecular cars and astonishing graphene technologies, one of which restores full mobility in laboratory rats whose spines have been severed. Download the podcast or listen to it here

Civil war ?

<iframe width="932" height="524" src="https://www.youtube.com/embed/ExwWYLKqftc" title=""The Gender Identity Conversation" with Katie Herzog" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> 

Wednesday 1 February 2023

On Darwin's blunder?

Darwin’s Category Errors and Their Consequences


After his return from the Beagle expedition in the later 1830s Charles Darwin spent some time putting together thoughts about evolution which were to result in a provisional, unpublished pencil sketch of 1842 and in another, informal essay of 1844 both of which, in expanded form, were to form the basis of his Origin of Species of 1859. It was because his eventual magnum opus was to remain under wraps for the best part of two decades that Darwin in this period might have appeared to be more active in the field of geological debate than he was in the biological sphere. Yet behind the scenes he was working on both fronts at the same time and his modus operandi in his geological work may be usefully compared with his methods in the biological sphere, all the more so since his approach to biological matters was so heavily influenced by methods used by Sir Charles Lyell, Britain’s premier geologist of the earlier Victorian era. 

Thinking in Analogies

Darwin’s first public communication in this pre-Origin of Species period was on the subject of whether a Scottish loch had been of marine or fresh water provenance. The geological puzzle concerned some physical features in the Glen Roy area of the Highlands of Scotland, some twenty miles from Loch Ness, an area noted for the geological phenomenon of its three “roads,” as local folklore terms them. It is now known that the so-called parallel roads on a hillside in Glen Roy are in reality loch terraces or strand lines that formed along the shorelines of an ancient ice-dammed loch at the time of the last Ice Age. The ice had repeatedly melted and refrozen over geological time with the water levels coming to rest at slightly different set points each time. In 1839, in a paper read before the Royal Society, Darwin unwisely chanced his arm by seeking to explain these roads as having resulted from ancient, marine beaches; but premier Harvard academic Louis Agassiz and Scots geologists soon showed that this must have been an ancient freshwater lake once dammed up by ice (the Swiss-American Agassiz had ample experience of glaciers in the country of his birth).

What is instructive about Darwin’s swiftly disproved conjecture is that it was based on a misleading analogy he had come across in his voyaging years in South America. This he freely confessed in his autobiography when he wrote,

This paper was a great failure, and I am ashamed of it. Having been deeply impressed with what I had seen of elevation of the land in S. America, I attributed the parallel lines to the action of the sea; but I had to give up this view when Agassiz propounded his glacier-like theory.1

As Robert Shedinger has observed, Darwin advanced his theory despite the telling absence of any ancient marine residues such as seashells, adding that “when Darwin developed what he thought he felt was a compelling idea, he doggedly held to it even when faced with a lack of clear evidence.”2 This was a tendency readily observable in the biological sphere when he notoriously declined to recognize the true import of the absence of fossilized transitional forms as being detrimental to his theory of natural selection with its (claimed) capacity to leap-frog over the species barrier — that physiological barrier whose importance had been repeatedly underscored by such authorities as Cuvier and Richard Owen.

Argument from an inappropriate analogy was also to bedevil a second geological theory Darwin developed in 1842, this time in relation to the formation of coral reefs. During his travels in South America he had once observed what he took to be evidence that coral reefs emerged with the subsidence of surrounding land: as the land subsided, a coral reef or atoll would come to the fore. However, work by other geologists suggested that as often as not the reverse could be the case. That is, land underneath the sea would rise and bring towards the surface small organic forms congregating in reefs. Darwin’s theory could not then be one of general validity and his would-be universal theory could not in the end be substantiated. Crossing over to the biological sphere again one is reminded of Darwin’s wholly theoretical postulation of those hereditary entities he termed “gemmules,” a theory which failed to find acceptance since the postulation had no empirical back-up, as even Darwin conceded (it was definitively disproved by Mendelian genetics at the beginning of the 20th century).

A Major Category Error

In addition to resistance to such questionable analogies in Darwin’s thinking, there also arose the profounder objection lodged by Sir Charles Lyell to the effect that biology and geology ought not properly to be even mentioned in the same breath. In Lyell’s view the implicit analogy invoked by Darwin between the two domains was impermissible. It was of course only natural, given that Darwin’s earliest publications were in the field of geology, that he took Sir Charles Lyell, the leading geologist of the mid-Victorian era, as guide. Lyell’s three-volume Principles of Geology (1830-3), which worked on and developed geological principles first enunciated by James Hutton in his Theory of the Earth (1788), was to furnish an important intellectual springboard for the Origin of Species, as Darwin himself readily acknowledged. Lyell had described the crust of the earth by reference to natural forces alone without reference to such phenomena as the Biblical Flood (which he dismissed as “Mosaic geology”). Since Lyell had removed the hand of God from geological history, why then retain it to explain natural history in terms of separate special creations? If there was a story of natural evolution in the geological record, so too surely there must be a similar story to tell in the study of sentient beings, Darwin reasoned.

Yet although biological gradualism-cum-natural selection inspired by the idea of geological “uniformitarianism”3 seemed an uncontroversial form of intellectual progression to Darwin, Lyell thought that Darwin carried over his early formation as a geologist into the biological realm too indiscriminately and without attending to the appropriate modifications of analysis required. In short, Darwin’s ambition to apply Lyell’s uniformitarian approach to biology represented for Lyell a wrong-headed determination to postulate an ontological equivalence between organic and inorganic spheres. Discounting Darwin’s implied equivalence between geology and biology, Lyell as late as 1872 (and despite numerous appeals by Darwin himself) declared the basic problem of creation/evolution to be as inscrutable as it had been in the earlier Victorian period when it was candidly termed “the mystery of mysteries.” In Lyell’s opinion, Darwin’s intervention had solved nothing since it had been flawed from the start by some fundamentally misconceived philosophical reasoning. 

One can easily see the force of Lyell’s objection. There seem to be limited grounds for comparing the wholly material and inorganic substratum of Earth with its living superstructure. One would not, for instance, think it appropriate to compare rocks and cliffs with human consciousness and view those entities as lying only slightly distant from each other on the same sliding scale. There is a great difference between planet Earth as a geological formation, which shares its history and mode of formation with the rest of the outer cosmos, and the later, superposed realm of terrestrial life and sentience, that superstructure of life forms of unknown etiology thought to have developed on our once barren planet only some five million years ago — which in geological terms of course counts as fairly recently. That ancient geological segment of our planet is self-evidently different in kind to the animate sphere, being quite simple in texture when compared with the quite unsearchable complexities and subtleties of the organic world.4 As Barry Gale once pointed out, 

Mountains might decay and new mountains be thrust up again, but these new mountains were not considered to be more complex or very different from previous ones. For Lyell, there were no basic changes in the forms of natural phenomena.5

Lyell denied any development in non-organic phenomena which simply underwent slow, non-directional change over the eons. Although the earth was in a state of constant flux, it was not moving in any particular direction. Darwin on the other hand claimed that, in the organic world, there was a progression of forms with movement over time from the very simple to the exceptionally complex. Such was the grand narrative of evolution which Darwin inherited and extended from the work of his grandfather, Erasmus Darwin. Yet since nothing of this sort was observable in Lyell’s inorganic world of arbitrary forces it is hardly surprising that Lyell thought the two domains incommensurable. 

A Category Error Repeated?

The living part of our planet then has no identifiable counterpart in the external universe — despite unceasing attempts by space explorers to somehow conjure life from what appears to be the irredeemable barrenness found on Mars and other bodies in the external universe. There are now conspicuously fewer alien-hunters about than there were in the era of Frank Drake and Carl Sagan in the 1970s and ’80s6 since modern space science tends to confirm Lyell’s view of the radical dissimilarity of organic and inorganic worlds. The sheer exceptionalism of the terrestrial biosphere stands in sharp contrast both to the life-denying deadness of the outer cosmos and even to 90 percent of the world we inhabit. Viewed quantitatively, the areas of our planet amenable to human habitation represent a relatively small area of the earth for, as Michael Marshall has recently noted, our ambient atmosphere above a certain height will kill us (a fact all too well-known to mountain climbers, let alone astronauts) and so would the ever-burning furnace at the earth’s core were we to descend so far. Only about 10 percent of our world is human friendly (to this degree or that) with many terrestrial extremities remaining “egregiously hostile to life.”7 Our much-bruited “Goldilocks zone” is all the more to be treasured for being such a very narrow band of habitability. Life on earth represents an absolute cosmic singularity (pace the alien-hunters) and, being such a singularity, is by definition not amenable to comparison with anything else at all.

It is the way in which critical parts of our planet represent an albeit flawed paradise whereas some terrestrial extremities together with all known outer parts of the universe remain a life-averse hellscape which requires pondering, comments Marshall. This decidedly nontrivial distinction has indeed been pondered, particularly in the last half century in debates stemming from our somewhat belated recognition of the exceptionalism of Planet Earth. This has led to a considerable shift in what might be termed many persons’ cosmographic imagination. In no few cases it has resulted in a very sharp reversal of the once very influential cosmological Weltanschauung typical of philosopher Bertrand Russell’s generation in the first half of the 20th century.

The Cosmographic Paradigm Shift 

Where once Russell (to whom Richard Dawkins likes to acknowledge his philosophic debt) famously described Planet Earth as an accident in a cosmic backwater, the recently revealed bio-friendliness of our planet would appear to stand in implicit opposition to that older conception of Earth as an unconsidered cosmic orphan. Crucially, Russell was writing in the first decades of the 20th century, well before the discovery of what astrophysicist Brandon Carter in 1973 dubbed the “anthropic principle” — meaning the way in which planet Earth appears to be fine-tuned to generate and sustain animal and human life.8 Indeed, so complete is the discontinuity between Earth and the extraterrestrial dead zone revealed by modern findings that it seems to make nonsense of the centuries-old “Copernican principle” whose general acceptance ousted the earth from the centrality it had enjoyed in the medieval world picture. Michael Denton has even gone so far as to suggest that the openly anthropocentric view held by our medieval forbears — that our world represented the geographic center of the universe — should now be rehabilitated under revision. To be sure, planet Earth is clearly not central in the spatial sense but it certainly is so in the far more important symbolic and moral sense that we are the unique beneficiaries of a planet on which all available meaning centers — a recognition that has proved little less than revolutionary in changing hearts and minds. 

It is not insignificant that, five years after the promulgation of the anthropic principle, eminent biologist William H. Thorpe encouraged a return to ideas of intelligent design first proposed by William Paley in his famous Natural Theology (1802):

The Argument from Design has been brought back to a central position in our thought from which it was banished by the theory of evolution by natural selection more than a century ago. There seems now to be justification for assuming that from its first moment the universe was “ordered” or programmed — was in fact Cosmos not Chaos.9

Leading astronomers such as Paul Davies have endorsed that sentiment by stressing how such benign cosmic arrangements as we enjoy could hardly have arisen by chance. Davies points out that it is a merely semantic point as to whether you conceive of the shaping force behind this providential arrangement as the Christian God or some other unseen power.10 The essential point remains that it is logically impossible to conceive of our planet as an arbitrary and accidental collocation of atoms, objects, and life-forms (as both ancient Lucretianism11 and Lucretianism’s modern legatee, present-day evolutionary orthodoxy, insist in the teeth of universal evidence to the contrary). 

And even if we are obliged to concede that the ultimate seat of authority cannot be apprehended by our common, anthropomorphic categories of understanding, a basic respect for the balance of probabilities should dictate that the existence of such an agent be taken seriously in our current conversations. It is of course well enough known that some cosmologists have, for purely doctrinaire reasons, tried to evade the theistic implications of the available evidence by appealing to a wholly imaginary “multiverse.” They have wished to conclude that planet Earth’s unique good fortune is due to a kind of cosmic roulette wheel which decreed that somewhere had to be the winner from an infinity of parallel universes. Lyell’s fine distinctions have apparently been lost sight of in the rather wholesale views of those who, like Darwin, would indiscriminately lump together organic and inorganic spheres — a grand category error whose origin Lyell would have diagnosed as a lack of clarity in philosophic reasoning — the same kind of contra-logical reasoning that is determined to believe that human consciousness will have arisen as an accidental “epiphenomenon” of purely material factors.