Search This Blog

Sunday, 10 April 2016

Golgotha:The Watchtower Society's commentary.

GOLGOTHA

Golʹgo·tha) [Skull [Place]].

The place outside, although near, the city of Jerusalem, where Jesus Christ was impaled. (Mt 27:33; Joh 19:17-22; Heb 13:12) A road and a garden tomb were nearby. (Mt 27:39; Joh 19:41) “Golgotha,” or “Skull Place,” is also called “Calvary” (Lu 23:33, KJ, Dy), from the Latin calvaria (skull). The Biblical record does not state that Golgotha was on a hill, though it does mention the fact that some observed the impalement from a distance.—Mr 15:40; Lu 23:49.

The Church of the Holy Sepulchre now stands on the traditional site of Golgotha and Jesus’ tomb. In the fourth century C.E., Emperor Constantine assigned the task of determining the place of Jesus’ impalement and his tomb to Bishop Macarius, who decided that Hadrian’s then-existing temple of Aphrodite (Venus) had been erected on the site. Constantine therefore ordered the demolition of this temple and the construction of a basilica that later underwent expansion and modification, becoming the Church of the Holy Sepulchre. Archaeological excavations done since 1960 indicate that the area was used as a burial ground, and it is thought that this was true in the first century C.E. Though located within the present walls of Jerusalem, the site is believed to have been outside the city walls in Jesus’ day.

Another location that was proposed as the site of the impalement of Jesus is a promontory 230 m (755 ft) NE of the Damascus Gate, now known as Gordon’s Calvary. It was suggested in 1842 as the true location of Golgotha and Jesus’ tomb. In 1883 the location was endorsed by General C. G. Gordon, a British military hero. The identification was based on conjecture. On the basis of archaeological evidence available, Gabriel Barkay states that the nearby Garden Tomb that is frequently pointed out to tourists as being the burial place of Jesus was originally hewn and used some time in the eighth or seventh century B.C.E. That would not fit the description at John 19:41 of “a new memorial tomb, in which no one had ever yet been laid.”—Biblical Archaeology Review, March/April 1986, p. 50.


Identification of Golgotha has often become an emotional religious issue. There is, however, no archaeological evidence that “Gordon’s Calvary” is the place. As for the location marked by the Church of the Holy Sepulchre, its identification takes into account archaeological findings but is based largely on tradition that dates to the fourth century. Regarding the latter location, Biblical Archaeology Review (May/June 1986, p. 38) states: “We may not be absolutely certain that the site of the Holy Sepulchre Church is the site of Jesus’ burial, but we certainly have no other site that can lay a claim nearly as weighty.” So the identification remains conjectural.

Another failed Darwinian prediction XVI

Structures do not evolve before there is a need for them

A fundamental premise of evolutionary theory is that evolution has no foresight. It is a blind process responding to current, not future, needs. This means that biological structures do not evolve before they are needed. But many examples of this have been discovered in recent years. For instance, in the embryonic stages of a wide variety of organisms, the development of the vision system is orchestrated by similar control genes known as transcription factors. As one paper explained, “All eyes, invertebrate and vertebrate, develop through a cascade of similar transcription factors despite vast phylogenetic distances.” (Wake, Wake and Specht) Because these transcription factors are so prevalent across the evolutionary tree, they must have evolved in the very early stages of evolution, in an early common ancestor. But that was before any vision systems had evolved. The vision system is just one of several such examples showing that the genetic components of many of today’s embryonic development pathways must have been present long before such pathways existed. Evolutionists now refer to the appearance of these genetic components, before they were used as such, as preadaptation:

Genome comparisons show that the early clades increasingly contain genes that mediate development of complex features only seen in later metazoan branches. … The existence of major elements of the bilaterian developmental toolkit in these simpler organisms implies that these components evolved for functions other than the production of complex morphology, preadapting the genome for the morphological differentiation that occurred higher in metazoan phylogeny. (Marshall and Valentine)

Such preadaptation extends beyond embryonic development. For example, several key components of the human brain are found in single-celled organisms called choanoflagellates. Therefore these key components must have evolved in single-celled organisms, long before animals, brains and nerve cells existed. As one evolutionist explained, “The choanoflagellates have a lot of precursors for things we thought were only present in animals.” (Marshall)

Another example is the molecular machines for protein transport across the mitochondria inner membrane which must have evolved long before mitochondria existed. (Clements et. al.) As one evolutionist explained, “You look at cellular machines and say, why on earth would biology do anything like this? It’s too bizarre. But when you think about it in a neutral evolutionary fashion, in which these machineries emerge before there’s a need for them, then it makes sense.” (Keim)

References

Clements, A., D. Bursac, X. Gatsos, et. al. 2009. “The reducible complexity of a mitochondrial molecular machine.” Proceedings of the National Academy of Sciences 106:15791-15795.

Keim, Brandon. 2009. “More ‘Evidence’ of Intelligent Design Shot Down by Science.” Wired Aug. 27. http://www.wired.com/wiredscience/2009/08/reduciblecomplexity/

Marshall, Michael. 2011. “Your brain chemistry existed before animals did.” NewScientist September 1.

Marshall C., J. Valentine. 2010. “The importance of preadapted genomes in the origin of the animal bodyplans and the Cambrian explosion.” Evolution 64:1189-1201.

Wake D., M. Wake, C. Specht. 2011. “Homoplasy: from detecting pattern to determining process and mechanism of evolution.” Science 331:1032-1035.

On the end of technology.

The holy scriptures on anihilationism

How I.D brings order from chaos

What Has a Volcano Done for You Lately?
Evolution News & Views 

Volcanoes are common in the solar system. Remnants of ancient lava flows are plentiful on Mercury and Venus. Our moon has large "seas" (maria) of solidified lava. Mars has the largest extinct volcano known in the solar system, Olympus Mons -- a single volcano as big across as Arizona. Beyond Jupiter, evidence of cryovolcanic activity has been detected on some of Saturn's icy satellites, especially Enceladus, which erupts salty ice water out of over 100 fissures at its south pole. Saturn's Titan and Neptune's Triton may have ice volcanoes, too, and a large cryovolcano may still be active on Pluto.

Only two bodies in the solar system, however, have hot-lava volcanoes that are erupting now, as far as we can tell: Earth and Jupiter's moon Io. Comparing these two worlds, can we find a story of intelligent design related to this powerful geological force that can toss material upward for miles against gravity and cover vast areas of real estate with hot lava, rocks, and dust?

Fraser Cain wrote an intriguing article for Universe Today, "What Are the Benefits of Volcanoes?" -- a jolting headline for those of us picturing residents fleeing for their lives from pyroclastic flows, mummified remains under Pompeii from Mt. Vesuvius, houses in Hawaii being swallowed up by hot lava, or other disasters in the news. Actually, though, we owe much to volcanoes. As frightening as they can be up close, they are mere pimples on Earth's skin as seen from space. And they provide a remarkable delivery system from the depths of the Earth to the surface. Cain lists the ways volcanoes enhance the habitability of the Earth.

Soil enrichment. In addition to the noxious vapors and silica, volcanic debris often contains minerals high in iron, magnesium and potassium. "As a result, regions that have large deposits of volcanic soil (i.e. mountain slopes and valleys near eruption sites) are quite fertile." In Italy, he says, much of the land is limestone, yielding poor soil. By contrast, the volcanic plains around Mt. Vesuvius are very fertile because of weathered volcanic ejecta. The same is true on the Hawaiian islands and in many other locales.

Land expansion. Volcanoes expand the habitable area of the Earth. "In addition to scattering ash over large areas of land, volcanoes also push material to the surface that can result in the formation of new islands," including the Hawaiian chain, the Aleutian islands, many areas in Micronesia and the south Pacific, and other places. Interestingly, early human civilizations made their marks on volcanic islands in the Mediterranean, like Cyprus, Crete and the Aegean islands. (The inhabitants of Santorini, however, were in the wrong place at the wrong time.) In recent years we have seen volcanic islands like Surtsey rise from the ocean, then become rapidly colonized by plants, birds and other animals, as were the Galapagos Islands in prehistoric times.

Volcanic minerals and stones. Humans make many useful products from volcanic ejecta, everything from pumice for hand soap to road material. Cain has lots of examples to share:

The finest grades of these volcanic rocks are used in metal polishes and for woodworking. Crushed and ground pumice are also used for loose-fill insulation, filter aids, poultry litter, soil conditioner, sweeping compound, insecticide carrier, and blacktop highway dressing.
That's just for starters. He mentions that the roof of the Pantheon in Rome was made from concrete that includes volcanic tuff, making it light and strong. From roofing material and plaster to the walls of nuclear reactors, volcanic materials find their ways into well-designed structures, and have since the dawn of civilization. But that's not all; there are riches from the depths of the Earth delivered by volcanoes.

Precious metals that are often found in volcanoes include sulfur, zinc, silver, copper, gold, and uranium. These metals have a wide range of uses in modern economies, ranging from fine metalwork, machinery and electronics to nuclear power, research and medicine. Precious stones and minerals that are found in volcanoes include opals, obsidian, fire agate, flourite, gypsum, onyx, hematite, and others.
He doesn't mention diamonds. Did you know that diamonds are delivered from deep in the mantle at high speed through explosive eruptions called kimberlite intrusions? Think about that the next time you watch the groom place a sparkling gem on his bride's finger.

Global cooling. The ash clouds from volcanoes also play a role moderating Earth's climate. "When volcanic ash and compounds like sulfur dioxide are released into the atmosphere, it can reflect some of the Sun's rays back into space, thereby reducing the amount of heat energy absorbed by the atmosphere," Cain says. The Pinatubo eruption of 1991 caused measurable temperature drops for years -- all from one volcano.

Hot springs and geothermal energy. Many countries rely on geothermal energy associated with recent volcanic activity. Yellowstone's geysers are a popular tourist attraction. From free energy production to enjoyment of a soak in a natural hot spring, heat close to the surface of the planet has proven a benefit to many. There are even macaques in Japan that soak in hot springs. Molecular biologists who study "thermophiles," bacteria that thrive in hot springs, are learning about heat-tolerant enzymes that inspire numerous applications in technology and medicine (example at PubMed).

At this point, you may be wondering if we are going to assert that volcanoes are intelligently designed. No. Cain's last bullet point in his "benefits of volcanoes" will lead to the issue we want to focus on.

Outgassing and atmospheric formation. To Cain, this is "by far" the most beneficial aspect of volcanoes: the role they have played in forming Earth's atmosphere. But here, he brings in Mars, Venus, Mercury, and Io, saying:

And Io, Jupiter's volcanically active moon, has an extremely tenuous atmosphere of sulfur dioxide (SO²), sulfur monoxide (SO), sodium chloride (NaCl), sulfur monoxide (SO), atomic sulfur (S) and oxygen (O). All of these gases are provided and replenished by the many hundreds of volcanoes situated across the moon's surface.
As you can see, volcanoes are actually a pretty creative force when all is said and done. In fact, us [sic] terrestrial organisms depend on them for everything from the air we breathe, to the rich soil that produces our food, to the geological activity that gives rise to terrestrial renewal and biological diversity. [Emphasis added.]

Io's volcanoes plaster its surface with lava and give it an atmosphere, but nothing lives there. Nothing benefits from all that heat and energy. The only ones who benefit from volcanoes are living things that have a genetic code. The intelligent design is not in the volcanoes, but in the code that can build an organism, whether an archaeal microbe, a macaque, or a human being that knows what a "benefit" is. An organism can take a force of nature and use it for a function. Everything on Io is dead. Nobody benefits, except the scientist who studies Io's volcanoes from spacecraft intelligently designed for understanding the forces of nature.

But on Earth, volcanoes are a resource. We can find an aspect of design in the fine-tuning of the forces of nature that make our universe and Earth habitable. Beyond that, volcanoes are not examples of complex specified information (CSI). They are unguided forces that possessors of CSI can harness. Where there is no life, volcanoes -- as impressive as they look -- are mere scars of undirected energy.

Let's end with one more remarkable example of design harnessing undirected forces. You probably have seen jewelry with palladium in it. You probably also use platinum, an "extremely rare metal," every day. One source says that "one-fifth of everything we use either contains platinum or requires platinum in its manufacture." We already know that human beings can intelligently design things with these metals. But here's something really interesting that came to light recently. Scientists at the University of Adelaide have discovered that we find platinum on the surface of the Earth because bacteria bring it to us!

"Traditionally it was thought that these platinum group metals only formed under high pressure and temperature systems deep underground, and that when they were brought to the surface through weathering and uplift, they just sat there and nothing further happened to them," says Dr Reith.
"We've shown that that is far from the case. We've linked specialised bacterial communities, found in biofilms on the grains of platinum group minerals at three separate locations around the world, with the dispersion and re-concentration of these elements in surface environments.

"We've shown that nuggets of platinum and related metals can be reformed at the surface through bacterial processes."


Now that is uncanny. We might not have found these useful metals to apply our design skills on them if it had not been for the fact that "the entire process of formation of platinum and palladium was mediated by microbes." And what do microbes have embedded within them, class? Complex specified information.

Who's being antiscience now?

"Anti-Science" Revisited as Adult Stem Cells Prevent Heart Failure Deaths
Wesley J. Smith 

Remember when adult stem cell advocates were called "anti-science" by the embryonic stem cell lobby for arguing that we could have our regenerative medicine and non-contentious ethics too?

I do. Well, the so-called anti-scientists had it far more right than their accusers. Adult stem cells from patients' own bodies have been shown in studies to halve deaths from heart failure in comparison to patients receiving placebo. From the Telegraph story:

Stem cells can repair a damaged heart and potentially halve the number of people dying from heart failure, scientists have shown, in a major breakthrough for regenerative medicine...

Now, in the largest trial ever conducted, doctors in the US have proven that even the most serious cases of heart failure can be repaired using stem cells harvested from a patient's own bone marrow.

End-stage patients, whose only hope was a heart transplant, were treated with stem cells in a single operation. Doctors found the group were 37 per cent less likely to have been admitted to hospital in the 12 months following the operation and half as likely to have died than those on placebo.

I did a Google search and found very few stories covering this wonderful breakthrough. How telling about media bias, still in the tank for the embryonic approach.


Indeed, if this had been an embryonic stem cell breakthrough, you would have heard the headlines. Don't be surprised if the next embryonic stem cell animal study brings greater news coverage than this very hopeful story of an ethical technique now alleviating great human suffering.

Yet more on the plagiarism of the original technologist.

Biomimetics -- Where the Action Is, Continued

Evolution News & Views 


We pick up where we left off last week ("Biomimetics -- Where the Action Is") with more examples of design-based science from around the world.

Gecko astrobot. Get a grip! NASA just launched a space hero to the International Space Station. You could call him Supergecko. Actually, it's a new material inspired by this superhero among animals, the lizard that can cling to anything. New Scientist says, "In a few years, the exterior of the International Space Station could be crawling with geckos."

It's not an alien invasion, or the plot of a low-budget sci-fi movie. The robotic geckos could follow from an experiment NASA launched to the International Space Station on Tuesday aboard an uncrewed Cygnus spacecraft.
The Gecko Gripper devices use tiny artificial hairs that replicate the ones geckos use to climb walls. They are designed to help astronauts to keep track of objects in zero gravity, and enable robots to crawl around a spacecraft to inspect and repair it. [Emphasis added.]

The bots have been tested and are able to grab and manipulate 100-kilogram objects. Instead of using adhesives, geckos adhere to almost anything using atomic van der Waals forces thanks to tiny hairs on their foot pads. "Geckos are nature's most amazing climbers," a JPL scientist says. "They go from the floor to the ceiling in 2 seconds."

Lignin plastic. The woody material in plants, lignin, is finding a new use. In a new alloy with rubber, it's replacing plastic with a biodegradable, "green" thermoplastic material to replace the petroleum-based plastics used in headgear and Lego pieces. Oak Ridge National Laboratory tells how this new material, using 50 percent renewable content, does not require solvents in its manufacture. It's a "meltable, moldable, ductile material that is at least ten times tougher than ABS" (the petroleum-based plastic used in many products from car bumpers to kitchen appliances). Another advantage is that it can put the waste from pulp and paper mills to good use. In this case, scientists are not imitating lignin as much as using their own intelligence to combine lignin's well-designed properties with soft rubber, producing a new material that takes advantage of the plant's built-in molecular wizardry.

Nature-inspired nanotubes. Thinking about how proteins assemble and fold, scientists at Lawrence Livermore National Laboratory were inspired to copy that "design principle" in the manufacture of nanotubes.

The research is the latest in the effort to build nanostructures that approach the complexity and function of nature's proteins, but are made of durable materials. In this work, the Berkeley Lab scientists studied a polymer that is a member of the peptoid family. Peptoids are rugged synthetic polymers that mimic peptides, which nature uses to form proteins. They can be tuned at the atomic scale to carry out specific functions.
One can't fail to notice that man's best efforts to date fail to "approach the complexity and function of nature's proteins," but they think it's a good start getting just a tube to form. "But building nanostructures is difficult," they say. "And creating a large quantity of nanostructures with the same trait, such as millions of nanotubes with identical diameters, is even more difficult." The simplest bacterium has this solution nailed down pat, from coding to manufacture.

Flagellum bots. Inspired by bacteria that swim with their outboard flagellar motors, scientists have created "soft microrobots whose body shapes can be controlled by structured light, and which self-propel by means of travelling-wave body deformations similar to those exhibited by swimming protozoa," Nature says. Such remote-controlled "microswimmers" could revolutionize medicine by unclogging arteries, fixing immotile sperm, or delivering drugs on demand to specific locations in the body. Microbes, of course, already meet all the design requirements for a microswimmer:

Designing a robust microscopic robotic swimmer that can navigate complex environments and perform useful functions is a key component of the quest. To operate autonomously or on demand, a microswimmer should be able to harvest energy, propel itself through fluid towards its target and respond to external signals. Energy is needed both to overcome the friction of the fluid and to maintain motion for a long time -- up to an hour for some biomedical applications.
One team publishing in Nature Materials has succeeded in designing biomimetic "soft microbots" that can swim, driven by structured light. It's not as fast as a paramecium, but it's a start at the JV track team. Nature compares a paramecium's speed with the dolphins we saw in Living Waters swimming in massive pods:

Nature has mastered highly effective means of micrometre-scale propulsion, exemplified by the rotation of helical bacterial flagella, and the wavy beating of the cilia (tiny hair-like structures) that cover Paramecium. This metachronal wave -- the sequential movement of thousands of cilia -- enables paramecia to swim at astounding speeds, up to ten body lengths per second. (For comparison, a dolphin barely makes two to three body lengths per second when in a hurry.)
Another paper in Nature Communications discusses the subject of microswimmers. First sentence: "Interactions of microswimmers with their fluid environment are exceptionally complex." Bacteria manage the complexities with ease using their flagella. "This mechanism does not require any active sensing in contrast with fish rheotaxis," the paper says, speaking probably of salmon fighting their way upstream against the current.

Human epigenetics. This last example is so striking, and so foreboding, as to raise serious questions about the future of biology and of the human race. Scientists at MIT are boasting about a new programming language they invented to program DNA. MIT biological engineers have created "a programming language that allows them to rapidly design complex, DNA-encoded circuits that give new functions to living cells."

Using this language, anyone can write a program for the function they want, such as detecting and responding to certain environmental conditions. They can then generate a DNA sequence that will achieve it.
"It is literally a programming language for bacteria," says Christopher Voigt, an MIT professor of biological engineering. "You use a text-based language, just like you're programming a computer. Then you take that text and you compile it and it turns it into a DNA sequence that you put into the cell, and the circuit runs inside the cell."

They plan to make the design interface available on the Web. Anyone will be able to create genetic programs -- no experience needed.

"You could be completely naive as to how any of it works. That's what's really different about this," Voigt says. "You could be a student in high school and go onto the Web-based server and type out the program you want, and it spits back the DNA sequence."
On the one hand, this accentuates the case for intelligent design, because it shows that the existing circuits in life represent programs coded for function on a hierarchical scale. On the other hand, can this kind of technology be trusted in the hands of morally challenged humans? What would this technology mean for bioterrorists and rogue nations seeking to employ biological warfare? Could a high school student release a dangerous microbe by mistake?


For now, we'll defer such discussions to ethicists and theologians. One thing all these examples show, however, is that the imitation of nature depends on design thinking. Think about that.

On Darwinism and the deprivileging of human life.

New Poll Reveals Evolution's Corrosive Impact on Beliefs about Human Uniqueness:

Evolution News & Views 


From the earliest days of civilization, humans have considered themselves exceptional among living creatures. But a new survey by Discovery Institute of more than 3,400 American adults indicates that the theory of evolution is beginning to erode that belief in humanity's unique status and dignityAccording to the survey, 43 percent of Americans now agree that "Evolution shows that no living thing is more important than any other," and 45 percent of Americans believe that "Evolution shows that human beings are not fundamentally different from other animals."

The highest levels of support for the idea that evolution shows that humans aren't fundamentally different from other animals are found among self-identified atheists (69 percent), agnostics (60 percent), and 18 to 29 year-olds (51 percent).

The theory of evolution is also reshaping how people think about morality. A majority of Americans (55 percent) now contend that "Evolution shows that moral beliefs evolve over time based on their survival value in various times and places."

"Since the rise of Darwin's theory, leading scientists and other thinkers have insisted that human beings are just another animal, and that morality evolves based on survival of the fittest," says historian Richard Weikart, author of the new book The Death of Humanity: And the Case for Life (Regnery).

What this new survey shows is just how pervasive these ideas have become in our culture. Many people no doubt continue to believe that humans are unique, but most do not think that evolution supports that position. Many critics of my earlier scholarship will be disconcerted to see this data, which powerfully supports my arguments about the way that Darwinism devalues human life, a key point I explain further in my new book.

Weikart is a professor of history at California State University, Stanislaus, and a Senior Fellow with Discovery Institute's Center for Science & Culture.

The data for this survey was collected from March 17-20, 2016, using SurveyMonkey Audience, a nationally representative panel of more than 6 million people recruited from the 30+ million people who take SurveyMonkey surveys each month.

The SurveyMonkey platform has been used for public opinion surveys by NBC News, the Los Angeles Times, and other media organizations. Survey respondents were randomly sampled from members of SurveyMonkey Audience in the United States who are 18 or older, and the survey included 3,427 completed responses.
The poll report is available as a free download here.

Saturday, 9 April 2016

Darwinism as lottery

More on Randomness in Natural Selection and Evolution

A common objection to neo-Darwinian evolution highlights the fact that the theory is based to a large extent on chance events, or chance in general. For decades now there has been an extraordinary volume of grim polemics against that objection. I wrote about this here last week in the context of a dispute between Richard Dawkins and Stephen Meyer. To my earlier comments, I would add the following.
Huxley stated in 1962, p. 44:
The frequent assertion that biological evolution is based on chance is entirely untrue. "Chance" events furnish its raw material but the process itself is directional, self-steering, but automatically steering itself in a definite direction. This is because...natural selection is not a random but an "ordering" mechanism.
Ridley 1985, p. 124, concurred:
How can I hope to succeed with three authors (Denton, Hayward, and Pitman) who, like the Victorian astronomer Sir John Herschel, think that evolution by natural selection is the "law of higgledy-piggledy" -- a "random search mechanism" (Denton), of "pure chance" (Hayward and Pitman)?
And up to the present, authors including Lorenzen, Mayr, Krauss (2016), and Dawkins (2016) have made similar statements (see here for Stephen Meyer's response to Dawkins).
Now, let's assume for a moment that the frequent assertion that biological evolution is based on chance is itself "entirely untrue." Assume instead that the process is, in fact, "directional" and "self-steering," truly an ordering mechanism.
In that case, what is the biological basis for the "survival of the fittest"? The survival is very clearly dependent on the functionality of the anatomical, physiological, genetic (and more) structures, synorganized and cooperating in the organism (including its behavior or conduct), about whose origin we just asked. How did these structures and functions evolve?
A hare runs faster, a lion jumps farther, a zebra senses a carnivore better, an eagle spots prey at a greater distance, a chimp responds more effectively than his or her conspecifics. Why? Because -- according to the neo-Darwinian doctrine -- the chance events of mutation and recombination have equipped them as needed, with all structures originating until then as well as the newly gained improvements. All this occurs in a continuous process of evolution. Thus, chance events determine everything in evolution: form and function of all structures dominating natural selection in the struggle for life and hence the entire phylogeny of plants and animals.
There is, of course, even according to neo-Darwinian theory, no selection without form and function of already existing and subsequently improved structures. Let me emphasize: all must be generated by random micro-mutations with "only slight or even invisible effects on the phenotype."
Hence, natural selection is in itself neither self-steering nor an ordering mechanism, etc. Instead it is the result of structures, features, forms, functions, and capabilities altogether produced by the chance events of accidental mutations alone, including the overproduction of descendants.
It is the habitual method of many supporters of the modern synthesis to disconnect or decouple natural selection from chance events, but this is totally unjustified. For me this disconnection or detachment appears to be part of a wily and widespread propaganda effort, seeking to manipulate public and scientific opinion to make neo-Darwinian evolution more acceptable and digestible. For evolution by an almost infinite series of fortunate strokes of small serendipities seems to be, prima facie, implausible to most thoughtful people.
And yet, consistent with evolution, the entire world of organisms has to be, in fact, traced back to pure chance events and random occurrences. Nobel laureate Jacques Monod seemed to belong to a minority of evolutionists who fully comprehend the consequences of the synthetic or neo-Darwinian theory. He wrote concerning mutations:
We call these events accidental; we say that they are random occurrences. And since they constitute the only possible source of modifications in the genetic text, itself the sole repository of the organism's hereditary structures, it necessarily follows that chance alone is at the source of every innovation, of all creation in the biosphere. Pure chance, absolutely free but blind, at the very root of the stupendous edifice of evolution: this central concept of modern biology is no longer one among other possible or even conceivable hypotheses. It is today the sole conceivable hypothesis, the only one that squares with observed and tested fact. [Italics by Monod.]
Yet, Monod's assertions on the origin of the biosphere are essentially all wrong. See here, please, for the facts and inferences in my encyclopedia article about natural selection. For references, see here.

Sunday, 3 April 2016

Once saved always saved?:The Watchtower Society's commentary

Does the Bible Teach ‘Once Saved, Always Saved’?

The Bible’s answer

No, it does not teach the doctrine of ‘once saved, always saved.’ A person who has gained salvation by faith in Jesus Christ can lose that faith and the salvation that comes with it. The Bible says that maintaining faith requires great effort, a “hard fight.” (Jude 3, 5) Early Christians who had already accepted Christ were told: “Keep working out your own salvation with fear and trembling.”—Philippians 2:12.

Bible verses that disprove the teaching of ‘once saved, always saved’

The Bible warns against serious sins that will keep a person from entering God’s Kingdom. (1 Corinthians 6:9-11; Galatians 5:19-21) If salvation could not be lost, such warnings would be meaningless. Instead, the Bible shows that someone who has been saved can fall away by returning to a practice of serious sin. For example, Hebrews 10:26 states: “If we practice sin willfully after having received the accurate knowledge of the truth, there is no longer any sacrifice for sins left.”—Hebrews 6:4-6; 2 Peter 2:20-22.
Jesus emphasized the importance of maintaining faith by giving an illustration in which he likened himself to a vine and his followers to branches on that vine. Some of them would at one time demonstrate faith in him by their fruits, or actions, yet would later fail to do so and be “thrown out like a [fruitless] branch,” losing their salvation. (John 15:1-6) The apostle Paul used a similar illustration, saying that Christians who do not maintain their faith “will be lopped off.”—Romans 11:17-22.
Christians are commanded to “keep on the watch.” (Matthew 24:42; 25:13) Those who fall asleep spiritually, whether by practicing “works belonging to darkness” or by not fully performing the works that Jesus commanded, lose their salvation.—Romans 13:11-13; Revelation 3:1-3.
Many scriptures show that those who have been saved must still endure faithfully to the end. (Matthew 24:13; Hebrews 10:36; 12:2, 3; Revelation 2:10) First-century Christians expressed joy when they learned that fellow believers were enduring in their faith. (1 Thessalonians 1:2, 3; 3 John 3, 4) Does it seem reasonable that the Bible would stress faithful endurance if those who did not endure would be saved anyway?

Only when his death was imminent did the apostle Paul feel that his salvation was assured. (2 Timothy 4:6-8) Earlier in his life, he recognized that he could still miss out on salvation if he gave in to fleshly desires. He wrote: “I pummel my body and lead it as a slave, so that after I have preached to others, I myself should not become disapproved somehow.”—1 Corinthians 9:27; Philippians 3:12-14.

File under "well said." XXII

He that gives should never remember, he that receives should never forget.
 The Talmud

Saturday, 2 April 2016

A clash of titans. XII

Is Roman Catholicism beyond redemption?Pros and Cons.

Another failed Darwinian prediction XV

Complex structures evolved from simpler structures

“To suppose that the eye,” wrote Darwin, “could have been formed by natural selection, seems, I freely confess, absurd in the highest possible degree.” But Darwin argued that we must not be misled by our intuitions. Given natural selection operating on inheritable variations, some of which are useful, then, if a sequence of numerous small changes from a simple and imperfect eye to one complex and perfect can be shown to exist, and if the eye is somehow useful at each step, then the difficulty is resolved. (Darwin, 143) The key was to identify “a long series of gradations in complexity, each good for its possessor” which could lead to “any conceivable degree of perfection.” (Darwin, 165)

But ever since Darwin the list of complex structures in biology, for which no “series of gradations in complexity” can be found, has continued to grow longer. Both the fossil record and genomic data reveal high complexity in lineages where evolution expected simplicity. As one evolutionist explained:

It is commonly believed that complex organisms arose from simple ones. Yet analyses of genomes and of their transcribed genes in various organisms reveal that, as far as protein-coding genes are concerned, the repertoire of a sea anemone—a rather simple, evolutionarily basal animal—is almost as complex as that of a human. (Technau)

Early complexity is also evident in the cell’s biochemistry. For instance, kinases are a type of enzyme that regulate various cellular functions by transferring a phosphate group to a target molecule. Kinases are widespread across eukaryote species and so they must persist far down the evolutionary tree. And the similarity across species of the kinase functions, and their substrate molecules, means that these kinase substrates must have remained largely unchanged for billions of years. The complex regulatory actions of the kinase enzymes must have been present early in the history of life. (Diks)

This is by no means an isolated example. Histones are a class of eukaryote proteins that help organize and pack DNA and the gene that codes for histone IV is highly conserved across species. So again, the first histone IV must have been very similar to the versions we see today. An example of early complexity in eyes is found in the long-extinct trilobite. It had eyes that were perhaps the most complex ever produced by nature. One expert called them “an all-time feat of function optimization.” (Levi-Setti, 29) Reviewing the fossil and molecular data, one evolutionist explained that there is no sequential appearance of the major animal groups “from simpler to more complex phyla, as would be predicted by the classical evolutionary model.” (Sherman) And as one team of evolutionists concluded, “comparative genomics has confirmed a lesson from paleontology: Evolution does not proceed monotonically from the simpler to the more complex.” (Kurland)

References

Darwin, Charles. 1872. The Origin of Species. 6th ed. London: John Murray.
http://darwin-online.org.uk/content/frameset?itemID=F391&viewtype=text&pageseq=1

Diks, S., K. Parikh, M. van der Sijde, J. Joore, T. Ritsema, et. al. 2007. “Evidence for a minimal eukaryotic phosphoproteome?.” PLoS ONE 2.

Kurland, C., L. Collins, D. Penny. 2006. “Genomics and the irreducible nature of eukaryote cells.” Science 312:1011-1014.

Levi-Setti, Riccardo. 1993. Trilobites. 2d ed. Chicago: University of Chicago Press.

Sherman, M. 2007. “Universal genome in the origin of metazoa: Thoughts about evolution.” Cell Cycle 6:1873-1877.
Technau, U. 2008. “Evolutionary biology: Small regulatory RNAs pitch in.” Nature 455:1184-1185.

Lamarck's revenge IV

A Tunable Mechanism Determines the Duration of the Transgenerational Adaptations

Tuning the Duration of Directed Adaptations

Organisms adapt to environmental challenges. In fact, many different organisms adapt in non-homologous ways to many different, unforeseen, environments. This contradicts evolution. For we are not talking about random changes occurring by chance, occasionally getting luck enough to confer an adaptation, and then propagating throughout the population. We’re not talking about an evolutionary process of random mutations and natural selection. That would take a long time. What we’re talking about are adaptations that specifically address environmental challenges, and occur in a good fraction of the population, over a few generations, or perhaps within a generation. Such directed adaptation occurs quickly.

That contradicts evolution because random mutations are not going to create such a complicated adaptation capability. Furthermore, they are not going to do this over and over, in so many different species, for so many different environments. And even if, by some miracle, this did occur, it would not be selected. That is because the adaptation capability is not for the current environment the organism faces, but for an unforeseen, hypothetical, future environment. The moment it arises, the adaptation capability is of no use, and would not be selected for.

But that’s not all.

As with Lamarck’s inheritance of acquired characteristics, these rapid, directed, adaptations are transgenerational. From parent to offspring, the progeny inherit the adaptation from the progenitor.

So now we must not only believe that evolution’s random mutations constructed these unbelievably detailed, complicated, unique adaptation capabilities, but that evolution also constructed the incredibly complicated means to transmit the adaptations to the next generation. As we saw recently, new research has demonstrated such transgenerational inheritance to be genetic, rather than via the parent’s behavior, breast milk, etc.

So again, random mutations must have created yet another complex design (the ability to pass along adaptations for an unforeseen environmental challenge), and it would have been worthless until that particular environmental challenge arose.

But that’s not all.

New research out of Tel Aviv University explains how these acquired adaptations persist through the later generations. Previously, these inherited adaptations were assumed simply to decay or “peter out” over a few generations. But the new research has uncovered proteins that manage and govern the duration of the adaptations. The adaptations are transmitted by small RNA molecules, and the proteins provide a tunable mechanism to govern the duration of the adaptation, over the generations. As the title of the paper explains:

A Tunable Mechanism Determines the Duration of the Transgenerational Small RNA Inheritance

Again, random mutations are not capable of producing such designs, and the designs would not be selected for. None of this makes any sense on evolution.

So now we must not only believe that evolution’s random mutations constructed these adaptation capabilities, and the means to transmit them to later generations, but also to control precisely their duration.

The science contradicts evolution.

Posted by Cornelius Hunter at Monday, March 28, 2016 

Human engineers continue to plagiarise the original technologist.

Biomimetics -- Where the Action Is
Evolution News & Views April 2, 2016 3:50 AM 

Since our last report on biomimetics (the imitation of nature's designs), several exciting new projects have come to light. Let's survey some of the research going on around the world that is inspired by biology.

Cactus cooler. How can you clean a fish farm? Use cactus, says the American Chemical Society. An old trick known by rural Mexicans uses prickly pear cactus to clean dirty water, but how does it work? ACS scientists found that mucilage, the gummy substance in some cactus tissues, attracts impurities like arsenic and bacteria (see the video clip in the article). Made up of some 60 sugars, mucilage seems like a useful cleanser for aquariums and fish farms. The scientists want to synthesize the compound to make a "recirculating aquaculture system that uses cactus extract as a cleansing agent."

Fish cornea. Meet the "elephantnose fish." Its unique ability to find predators and prey in murky water is inspiring technology that could touch the apple of your eye some day: high-tech contact lenses. The elephantnose fish has a specialized retina that captures and amplifies light. News from the National Institutes of Health tells how researchers at the University of Wisconsin-Madison are learning and imitating this fish's secrets:

The team took their inspiration from the elephant nose fish's retina, which has a series of deep cup-like structures with reflective sidewalls. That design helps gather light and intensify the particular wavelengths needed for the fish to see. Borrowing from nature, the researchers created a device that contains thousands of very small light collectors. These light collectors are finger-like glass protrusions, the inside of which are deep cups coated with reflective aluminum. The incoming light hits the fingers and then is focused by the reflective sidewalls. Jiang and his team tested this device's ability to enhance images captured by a mechanical eye model designed in a lab. [Emphasis added.]
The article describes how their bio-inspired contact lens (5-10 years away) will contain solar cells, sensors and electronics to enhance and focus light. The team is also finding inspiration in the compound eyes of insects, envisioning numerous applications in the line of sight. See the open-access paper in the Proceedings of the National Academy of Sciences (PNAS), where the authors say, "Our work opens up a previously unidentified direction toward achieving high photosensitivity in imaging systems" -- inspired by fish and insects.

Dragonfly cornea. Speaking of insects, "Someday, cicadas and dragonflies might save your sight," another news item from the American Chemical Society says, but not because of their compound eyes. These insects protect their delicate wings with "a forest of tiny pointed pillars that impale and kill bacterial cells unlucky enough to land on them." Could this secret render artificial corneas and lens implants antibacterial without coatings? By imitating these pillars with Plexiglas or Lucite, researchers at UC Irvine found they work to kill both gram-negative and gram-positive bacteria, depending on the size of the nanostructures they fabricate. "The group has filed for patents on the bactericidal surface and artificial cornea application and hopes to begin animal trials this year." Biomimetics can make money!

Mussel glue. How mussels and barnacles cling so well underwater has long puzzled scientists, but they sure would like to copy that ability. "The need for bio-inspired wet adhesives has significantly increased in the past few decades (e.g., for dental and medical transplants, coronary artery coatings, cell encapsulants, etc.)," begins another paper in PNAS. Somehow, mussels do it with protein. To copy the animal's wizardry, therefore, scientists need to identify and understand the molecular interactions of the "mussel foot proteins" involved. Scientists from UC Santa Barbara and Lehigh (Behe's turf) are making progress. They found out that mussels learned how to manage "a delicate balance between van der Waals, hydrophobic, and electrostatic forces." You have to know physics as well as biology to succeed here.

Shape shifter. You've heard of 3D printing. How about 4D printing? In "Biomimetic 4D Printing," Nature tells about efforts to imitate "nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls." We don't usually think of plant motions, but if seen in time lapse, their motions are real and targeted. If we could 3D-print things that shift their shapes in response to environmental triggers, think of the possibilities: "smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering." Here's what the wizards at Harvard's Wyss Institute for Biologically Inspired Engineering have come up with so far:

Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies.
Bone buildings. Bones and eggshells have the advantage of strength in spite of light weight, Michelle Oyen writes in The Conversation (see her in a video clip in the article). Why don't we build things like that? Steel and concrete are heavy, and to a world worried about climate change, they are dirty. Why not use clean, lightweight building materials inspired by nature? Caution: basic research needed:

In order to make biomimetic materials, we need to have a deep understanding of how natural materials work. We know that natural materials are also "composites": they are made of multiple different base materials, each with different properties. Composite materials are often lighter than single component materials, such as metals, while still having desirable properties such as stiffness, strength and toughness.
It's the biological component, like protein, that's the secret. Eggshells are 95 percent mineral and just 5 percent hydrated protein but that makes all the difference. Oyen says we can learn nature's tricks one of two ways: by mimicking the composition of the material itself, or by copying the process by which the material is made. Her lab is working on "neo-bone" at the centimeter scale, but there's no reason it could not be scaled up to industrial size, she says; it just takes a "major rethink" in how we build things. "The science is still in its infancy, but that doesn't mean we can't dream big about the future."

Frog therapy. Advances in biomimetics come from observation followed by inspiration. Who would have thought that the foam that tiny frogs use to surround and protect their eggs could someday deliver healing drugs to burn patients? At Strathclyde University, the BBC reports, engineers "are taking inspiration from the tiny Tungara frog from Trinidad" to do just that. The frogs use at least six proteins to retain the shape and strength of their egg nest. The scientists have made a synthetic version of frog foam that "could trap and deliver medication while providing a protective barrier between the wound dressing and the damaged skin." So far, they're only halfway there. "While foams like these are a long way from hitting the clinic, they could eventually help patients with infected wounds and burns, by providing support and protection for healing tissue and delivering drugs at the same time," they hope.


Are you getting inspired by biological design? Consider that biomimetics is proving to be a shot in the arm for both basic research and for applied science. Scientists have to understand what they observe, being curious about why a biological solution works (e.g., how does a mussel grip a rock underwater?). Then, with a little imagination, they can envision ways the natural process can be applied. From there, inventors and engineers can get busy trying to imitate the solution. Everyone can profit from the results.

On continuing to challenge "settled science"

"Question the Answer" -- in Every Field but Evolution
Sarah Chaffee March 31, 2016 12:39 PM

Walking on the University of Washington campus here in Seattle last week, I saw a banner proclaiming, "QUESTION THE ANSWER." It's fitting that this flag is on the campus of a research university, where scientists and students from all disciplines seek knowledge. It's healthy to confront the fluidity and uncertainty of scientific truth. In reality, though, when it come to the mechanisms of evolution, current thinking discourages "questioning the answer" -- in the lab, and in the biology classroom.

An article in Quartz ("Many scientific 'truths' are, in fact, false") reminds readers of how many recent scientific findings have turned out not to be reproducible. But author Olivia Goldhill looks on the bright side, observing that it is all part of the scientific process.

For example, a 2005 paper found that of 34 well-regarded medical research results that were retested, "41% had been contradicted or found to be significantly exaggerated." A project that sought to reproduce 100 psychological experiments had only a 40% success rate. The publication notes that "[b]y some estimates, at least 51% -- and as much as 89% -- of published papers are based on studies and experiments showing results that cannot be reproduced."

Goldhill attributes this phenomenon, which could be regarded as scandalous, to two factors: first, the push to publish, with journals preferring contributions that show significant results; and second, scientists mining large volumes of data for "significant" correlations.

Yet she sees a silver lining: "The idea that papers are publishing false results might sound alarming, but the recent crisis doesn't mean that the entire scientific method is totally wrong. In fact, science's focus on its own errors is a sign that researchers are on exactly the right path."

Or as Ivan Oransky at Retraction Watch told Quartz, "If you never find mistakes, or failures to reproduce in your field, you're probably not asking the right questions."

And they're correct, of course. But who will tell the evolutionists? Scientists and science teachers alike are expected to uphold allegiance to neo-Darwinism.

As scientists arguing for a new Extended Evolutionary Synthesis (EES) told Nature:

The number of biologists calling for change in how evolution is conceptualized is growing rapidly. Strong support comes from allied disciplines, particularly developmental biology, but also genomics, epigenetics, ecology and social science. We contend that evolutionary biology needs revision if it is to benefit fully from these other disciplines. The data supporting our position gets stronger every day.

Yet the mere mention of the EES often evokes an emotional, even hostile, reaction among evolutionary biologists. Too often, vital discussions descend into acrimony, with accusations of muddle or misrepresentation. Perhaps haunted by the spectre of intelligent design, evolutionary biologists wish to show a united front to those hostile to science. Some might fear that they will receive less funding and recognition if outsiders -- such as physiologists or developmental biologists -- flood into their field.

So groupthink and self-censorship are, or should be, a concern. Meanwhile, one-sided teaching of evolution misinforms students about the nature of science. It may lead them to see neo-Darwinism as a "fact" rather than an area of ongoing scientific debate. It certainly lends support to the mistaken idea that scientific ideas, once established, are no longer open to questioning.

Pedagogy in general benefits from critical thinking, not excluding on the subject of science. As Nature notes, "[S]tudents gain a much deeper understanding of science when they actively grapple with questions than when they passively listen to answers."

"Science isn't about truth and falsity, it's about reducing uncertainty," Brian Nosek, the psychology professor who tried to repeat 100 experiments, told Quartz. "Really this whole project is science on science: Researchers doing what science is supposed to do, which is be skeptical of our own process, procedure, methods, and look for ways to improve."


Neo-Darwinism is ripe for just such an approach.

Sunday, 27 March 2016

Commonsense about entropy.

The Common Sense Law of Physics
Granville Sewell March 27, 2016 1:16 PM

While the first formulations of the second law of thermodynamics were all about heat, about thermal entropy, many general physics texts generalize the second law beyond thermodynamics, with statements such as "In an isolated system, the direction of spontaneous change is from order to disorder" (Classical and Modern Physics, Kenneth Ford, 1973), and give examples of irreversible "entropy" increases that have nothing to do with thermal entropy, such as tornados turning towns into rubble, explosions destroying buildings, or fires turning books into ashes.

In these examples, "entropy" is generally used simply as a synonym for "disorder." In a 1970 Smithsonian article, for example, Isaac Asimov (Smithsonian, Volume 1, August 1970, p. 4) writes:

We have to work hard to straighten a room, but left to itself, it becomes a mess again very quickly and very easily.... How difficult to maintain houses, and machinery, and our own bodies in perfect working order; how easy to let them deteriorate. In fact, all we have to do is nothing, and everything deteriorates, collapses, breaks down, wears out -- all by itself -- and that is what the second law is all about.

The development of civilizations on a barren planet would seem to be a spectacular violation of these more general statements of the second law. How could a few fundamental, unintelligent, forces of physics alone rearrange the fundamental particles of physics into human brains, computers, jet airplanes, and Apple iPhones?

Asimov recognizes the problem in his Smithsonian article. He writes:

You can argue, of course, that the phenomenon of life may be an exception [to the second law]. Life on earth has steadily grown more complex, more versatile, more elaborate, more orderly, over the billions of years of the planet's existence. From no life at all, living molecules were developed, then living cells, then living conglomerates of cells, worms, vertebrates, mammals, finally Man. And in Man is a three-pound brain which, as far as we know, is the most complex and orderly arrangement of matter in the universe. How could the human brain develop out of the primeval slime? How could that vast increase in order (and therefore that vast decrease in entropy) have taken place?

But Asimov concludes that there is no conflict with the second law here, because:

Remove the sun, and the human brain would not have developed.... And in the billions of years that it took for the human brain to develop, the increase in entropy that took place in the sun was far greater; far, far greater than the decrease that is represented by the evolution required to develop the human brain.

This "compensation" argument, used by every physics text which discusses evolution and the second law to dismiss the claim that what has happened on Earth may violate the more general statements of the second law, was the target of my article "Entropy, Evolution, and Open Systems," published in the proceedings of the 2011 Cornell meeting Biological Information: New Perspectives (BINP).

In that article, I showed that the very equations of entropy change upon which this compensation argument is based actually support, on closer examination, the common sense conclusion that "if an increase in order is extremely improbable when a system is isolated, it is still extremely improbable when the system is open, unless something is entering which makes it not extremely improbable." The fact that order can increase in an open system does not mean that computers can appear on a barren planet as long as the planet receives solar energy. Something must be entering our open system that makes the appearance of computers not extremely improbable, for example: computers.

My BINP article includes a section entitled "The Common Sense Law of Physics," which uses a little humor to show how silly Asimov's compensation argument really is:

I was discussing the second law argument with a friend recently, and mentioned that the second law has been called the "common sense law of physics." The next morning he wrote: "Yesterday I spoke with my wife about these questions. She immediately grasped that chaos results in the long term if she would stop caring for her home."

I replied: "Tell your wife she has made a perfectly valid application of the second law of thermodynamics. In fact, let's take her application a bit further. Suppose you and your wife go for a vacation, leaving a dog, a cat, and a parakeet loose in the house (I put the animals there to cause the entropy to increase more rapidly, otherwise you might have to take a much longer vacation to see the same effect). When you come back, you will not be surprised to see chaos in the house. But tell her some scientists say, 'But if you leave the door open while on vacation, your house becomes an open system, and the second law does not apply to open systems...you may find everything in better condition than when you left.' I'll bet she will say, 'If a maid enters through the door and cleans the house, maybe, but if all that enters is sunlight, wind, and other animals, probably not.'"

Imagine trying to tell my friend's wife that, provided her house is an open system, the fact that chaos is increasing in the rest of the universe -- or on the sun, provided sunlight enters through the door -- means that chaos could decrease in her house while she is gone. Even if the door is left open, it is still extremely improbable that order in the house will improve, unless something enters that makes this not extremely improbable -- for example, new furniture or an intelligent human.

Suppose we take a video of a tornado sweeping through a town, and run the video backward. Would we argue that although a tornado turning rubble into houses and cars represents a decrease in entropy, tornados derive their energy from the sun, and the increase in entropy outside the Earth more than compensates the decrease seen in the video, so there is no conflict with the second law? Or would we argue that what we were seeing was too difficult to quantify, so we can't be sure there is a problem? Some things are obvious even if they are difficult to quantify.

In Signature in the Cell, Stephen Meyer appeals to common sense, in applying the second law to information: "Most of us know from our ordinary experience that information typically degrades over time unless intelligent agents generate (or regenerate) it. The sands of time have erased some inscriptions on Egyptian monuments. The leak in the attic roof smudged the ink in the stack of old newspapers, making some illegible.... Common experience confirms this general trend -- and so do prebiotic simulation experiments and origin-of-life research."

I have found that Darwinists, after reading this article, or my more recent 2013 Bio-Complexity article (both of which are reproduced in my Discovery Institute Press book In the Beginning and Other Essays on Intelligent Design) quickly see how silly the compensation argument is, and immediately retreat to the original, early, statements of the second law, saying that the second law of thermodynamics should never have been generalized beyond thermodynamics, and evolution does not violate the second law as applied to thermal entropy. Nevertheless, I'm sure general physics texts are still being written that apply it much more generally, and still dismiss the spectacular increase in order seen on our planet by saying, entropy can decrease in an open system.


Many others who read the article will ask, How could an idea as dumb as the compensation argument have been believed by so many intelligent scientists, for so long? That's a question that many people are finally starting to ask about Darwinism itself.

Another failed Darwinian prediction XIV.

Gene phylogenies are congruent:

Just as evolution predicts that gene trees and species trees should be congruent, it also predicts that different gene trees should be congruent. In 1982 David Penny and co-workers tested this prediction. They wrote that “The theory of evolution predicts that similar phylogenetic trees should be obtained from different sets of character data.” Their character data came from five different proteins and they concluded “there is strong support from these five sequences for the theory of evolution.” (Penny, Foulds and Hendy) But in later years, as more genetic data became available, it was clear that different genes led to very different evolutionary trees. As one study explained, the sequences of genes, “often disagree and can seldom be proven to agree.” (Doolittle and Bapteste) It is now well understood that “Gene and genome trees conflict at many levels” (Haggerty, et. al.) and that “Incongruence between gene trees is the main challenge faced by phylogeneticists in the genomic era.” (Galtier and Daubin) For evolutionists this failed prediction will require more complicated models of evolutionary history. As Penny now writes, he is “not rejecting the tree per se but enriching the tree concept into a network.” (Penny)

References

Doolittle, W., E. Bapteste. 2007. “Pattern pluralism and the Tree of Life hypothesis.” Proceedings of the National Academy of Sciences 104:2043-2049.

Galtier, N., V. Daubin. 2008. “Dealing with incongruence in phylogenomic analyses.” Philosophical Transactions of the Royal Society B 363:4023-4029.

Haggerty, L., et. al. 2009. “Gene and genome trees conflict at many levels.” Philosophical Transactions of the Royal Society B 364:2209-2219.

Penny, D. 2011. “Darwin’s Theory of Descent with Modification, versus the Biblical Tree of Life.” PLoS Biol 9:e1001096.

Penny, D., L. Foulds, M. Hendy. 1982. “Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences.” Nature 297:197-200.