Search This Blog

Saturday 12 January 2019

Neodarwinism's star witness defects.

Genetics and Epigenetics — New Problems for Darwinism
Evolution News @DiscoveryCSC


New findings in genetics and epigenetics are creating new problems for evolution. The simplistic version of neo-Darwinism expects all variation come from genetic mutations, which nature selects for fitness. Non-coding DNA was relegated to the junk pile — trash left over from natural selection, which favors DNA that codes for proteins. In a notion called subfunctionalization, copies of genes might be free to mutate and become new proteins, or decay into “pseudogenes,” one type of junk DNA. As usual, simplistic theories are often wrong. 

How Many Genes?

The Human Genome Project ended with a surprisingly low number of genes. But what if they missed some Researchers at Yale have been finding genes that were misidentified as non-protein coding due to the methods previous researchers used to annotate them. One of the newly identified genes, they say, plays a key role in the immune system. Are there others? 

The findings suggest many more protein-coding genes and functions may be discovered. “A large portion of important protein-coding genes have been missed by virtue of their annotation,” said first author Ruaidhri Jackson. Without vetting and identifying these genes, “we can’t fully understand the protein-coding genome or adequately screen genes for health and disease purposes.” 

The first sentence of their paper in Nature says, “The annotation of the mammalian protein-coding genome is incomplete.” They have identified a “large number of RNAs that were previously annotated as ‘non-protein coding,’” some of which are “potentially important transcripts” able to make protein. Restrictive methods in the past “may obscure the essential role of a multitude of previously undiscovered protein-coding genes.”

Epigenetics in Archaea

Does epigenetic inheritance and regulation work only in eukaryotes? No. Scientists at the University of Nebraska-Lincoln discovered that members of the “simple” kingdom of Archaea also have it. They watched microbes inherit extreme acid resistance in Yellowstone hot springs not through genetics, but through epigenetics.
    “The surprise is that it’s in these relatively primitive organisms, which we know to be ancient,” said Blum, Charles Bessey Professor of Biological Sciences at Nebraska. “We’ve been thinking about this as something (evolutionarily) new. But epigenetics is not a newcomer to the planet.”

The discovery “raises questions … about how both eukaryotes and archaea came to adopt epigenetics as a method of inheritance.” Now they have to confront whether an even earlier common ancestor had it, or whether it evolved twice. “It’s a really interesting concept from an evolutionary perspective,” said a doctoral student involved in the research. Critics of neo-Darwinism might describe those alternatives differently from just “interesting.” Ridiculous, perhaps, or falsifying.

Epigenetics in Plants

Briefly, a paper in  PNAS finds that “Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to heritable phenotypic variation.” Why do clones, with identical genomes, differ? The answer is epigenetics. 
   We found that phenotypic novelty in clonal progeny was linked to epigenetic imprints that reflect the organ used for regeneration. Some of these organ-specific imprints can be maintained during the cloning process and subsequent rounds of meiosis. Our findings are fundamental for understanding the significance of epigenetic variability arising from asexual reproduction and have significant implications for future biotechnological applications.
    
Non-Genetic Order

Here’s a cellular phenomenon that really is interesting, because it reveals a newly discovered structural order in the cell membrane. This structural order surely is inherited somehow, but may have little to do with genes. Biochemists had thought for a century that the inner space in the membrane is fluid and disordered, but techniques to probe that space have been difficult because the detergents used disrupt the membrane. Now, researchers at Virginia Commonwealth University, in conjunction with Nobel laureate Joachim Frank, used a new method without detergents. They were surprised — no, startled — to find an orderly hexagonal 3-D structure between the molecules in the lipid bilayer. Is there a reason for this orderly structure?
     Where earlier models had shown a fluid, almost structureless lipid layer — one often-cited research paper compared it to different weights of olive oil poured together — the VCU-led team was startled to find a distinct hexagonal structure inside the membrane. This led the researchers to propose that the lipid layer might act as both sensor and energy transducer within a membrane-protein transporter.

“The most surprising outcome is the high order with which lipid molecules are arranged, and the idea they might even cooperate in the functional cycle of the export channel,” said Joachim Frank, Ph.D., of Columbia University, a 2017 Nobel laureate in chemistry and co-author of the paper. “It is counterintuitive since we have learned that lipids are fluid and disordered in the membrane.”
    Their paper in PNAS says nothing about genetics, so maybe this comes about through physical interactions of the lipids and the protein channels. Whatever causes this orderly arrangement, it appears to interact with transmembrane channels, adapting to the conformational changes of the proteins, particularly a transporter called AcrB. Without the hexagonal mesh around the channel, and just a disordered fluid, the channels action might be less efficient, like a boxer without a sparring partner beating the air. Not only that, the hexagonal mesh also transmits the channel’s activity down the membrane to its neighbors. Fascinating!
       Through defined protein contacts, the lipid bilayer senses the conformational changes that occur in each TM [transmembrane] domain and then transduces effects of these changes through the lipid bilayer to neighboring protomers in a viscous interplay between cavity lipids and the AcrB trimer.
                 
Another Blow to the Central Dogma

Mauro Modesti gives his perspective on a new finding in Science, “A pinch of RNA spices up DNA repair.” The Central Dogma of genetics that views DNA as the master molecule controlling everything downstream, with no feedback, has been suffering since it was first taught the 1960s. In the same issue of Science, a paper reveals that RNA plays an essential role in DNA repair. What does this mean? Modesti explains,
                   Pryor et al. report the surprising discovery that ribonucleotides are frequently incorporated at broken DNA ends, which enhances repair. This important finding overturns the central dogma of molecular biology by demonstrating that transient incorporation of ribonucleotides in DNA has a biological function.

Genetic Determinism Lives On

The idea that humans are pawns of their genes has a long history, mostly negative. Genetic determinism undermines free will and character, giving people something physical to blame for their problems. Materialists continue the bad habit, though, as shown in this paper in Nature Scientific Reports, “A genetic perspective on the relationship between eudaimonic –and hedonic well-being.” The news from the University of Amsterdam puts it bluntly: “Discovery of first genetic variants associated with meaning in life.” But can something as psychological or even spiritual be reduced to genes? 

They checked DNA samples of 220,000 individuals, and had them answer a questionnaire. The genetic variants, they say, “are mainly expressed in the central nervous system, showing the involvement of different brain areas.” 

“These results show that genetic differences between people not only play a role in differences in happiness, but also in differences for in meaning in life. By a meaning in life, we mean the search for meaning or purpose of life.”

Did these researchers ever learn that correlation is not causation? Did they inspect their own genes? Did they answer a questionnaire, saying that they felt eudaimonia when proposing genetic determinism? Did their genes determine their own philosophy of mind? If so, then how can anyone believe them? What are universities teaching scientists these days?

Simplistic notions of neo-Darwinism seemed more plausible before new techniques uncovered the evidence of splendid design going on in cells. If the trend continues, 2019 will be a great year for intelligent design.

Sacred cows?

In Europe, Animal Rights Are Steamrolling Religious Freedom
Wesley J. Smith

As Western society secularizes, religious liberty is in danger of becoming passé. Increasingly, jurisdictions are enacting laws in furtherance of legitimate social considerations that, concomitantly, shrivel the freedom of religious believers to live according to their personal faith precepts.


Western Europe is leading the way. Belgium now requires all food animals be stunned before slaughter, which prevents their meat from being declared kosher or halal — hence edible — in accordance with the religious requirements of Judaism and Islam.

A Terrible Bind

Of course, such animal welfare laws are absolutely appropriate. But, until recently, comity was also preserved by allowing limited religious exemptions. Those accommodations are now systematically being removed. From the New York Times story:

Most countries and the European Union allow religious exceptions to the stunning requirement, though in some places — like the Netherlands, where a new law took effect last year, and Germany — the exceptions are very narrow. Belgium is joining Sweden, Norway, Iceland, Denmark and Slovenia among the nations that do not provide for any exceptions.

That puts observant Jews and Muslims in a terrible bind. They can have food shipped from elsewhere, which is more expensive. But what if other countries also ban such practices, or their home countries forbid the import of kosher or halal meat? Believers would be forced to choose between eating meat and violating their religious beliefs.

Some secularists would be just fine with that since these laws don’t infringe their own freedoms, while those who are anti-religious would delight in forcing such hard choices upon believers.

“The Law Is Above Religion”

Some non-religionists even presume to tell the faithful what their rules do and don’t require:
   Ann De Greef, director of Global Action in the Interest of Animals, a Belgian animal rights group, insisted that stunning does not conflict with kosher and halal doctrine, and “they could still consider it ritual slaughtering,” but the religious authorities refuse to accept that.

“They want to keep living in the Middle Ages and continue to slaughter without stunning — as the technique didn’t yet exist back then — without having to answer to the law,” she said. “Well, I’m sorry, in Belgium the law is above religion and that will stay like that.”

That kind of religious intolerance is only going to present in brighter hues going forward. There is great pressure, for example, to ban infant circumcision, a sacred and absolute requirement of Jews, also practiced as a religious duty by many Muslims. Efforts are also afoot to force doctors to participate in abortion and/or euthanasia — even when a doctor considers such acts to be a grievous sin materially impacting their own eternal destinies. I am sure readers can think of many other examples.

Freedom cannot be a one-way street. Steamrolling traditional believers’ faith values is a recipe for tearing society apart.

American healthcare on its deathbed?:Pros and cons.

How fish school humans on design.

Fish Teach Humans about Design
Evolution News & Views April 1, 2016 3:48 AM

Why do fish bob their heads back and forth as they swim? Is that wasted movement? Is it an inescapable consequence of undulatory motions during swimming? That's what many scientists used to think. What a team found out reminds us never to assume nature's methods are wasteful.

A new paper in Nature Communications summarizes the find: "Fish optimize sensing and respiration during undulatory swimming." That word optimize has design written all over it, especially when the fish optimizes three things at once:

Previous work in fishes considers undulation as a means of propulsion without addressing how it may affect other functions such as sensing and respiration. Here we show that undulation can optimize propulsion, flow sensing and respiration concurrently without any apparent tradeoffs when head movements are coupled correctly with the movements of the body. This finding challenges a long-held assumption that head movements are simply an unintended consequence of undulation, existing only because of the recoil of an oscillating tail. We use a combination of theoretical, biological and physical experiments to reveal the hydrodynamic mechanisms underlying this concerted optimization. [Emphasis added.]
Using a "bio-inspired physical model" with flow sensors, the team from Harvard and the University of Florida found that head bobbing actually improves swimming efficiency. Then they studied how the fish's lateral line sense improves with the resulting water flow. One might think that the extra motion of the head would confuse the lateral line sense, but the opposite is true.

We discovered that the motions associated with undulation can automatically enhance lateral line sensing on the head by minimizing self-generated stimuli. Fish move their heads in a way that minimizes pressure up to 50%, establishing a twofold greater sensitivity to an external stimulus than would otherwise be possible (Fig. 3a). At swimming speeds up to 2 L s−1, we found a heightened sensitivity around the anterior region of the head, which is where the majority of the encounters related to feeding and locomotion are initiated. We propose that during swimming, fish may not have to rely as extensively on the efferent system to distinguish between external and self-generated stimuli if they rotate their head in an appropriate phase with respect to side-to-side motion.
Simultaneously, this head motion increases the flow across the gills, enhancing respiration. This is the first time the coupling of motion with respiration has been demonstrated in fish like it has been with birds, horses and humans. Scientists used to view undulation and respiration as independent processes. No longer:

Here, we discover that fishes swimming with body undulations also show respiratory-locomotor coupling. Our pressure model reveals that undulation-generated pressures around the mouth and opercula oscillate dramatically. We found that fishes exploit these pressures by timing their respiratory movements accordingly, which likely minimizes the energetic cost of pumping the dense medium of water. High-speed, high-resolution video reveals that respiratory movements are tightly synchronized with head movements (Fig. 3b). When the pressure difference between the outside and inside of the mouth reaches 0.2 mm Hg, fishes open their mouth to allow water to flow in passively. Perhaps not coincidentally, this exact pressure difference is generated by the active buccal expansion of stationary fish. In this way, we hypothesize that swimming fishes exploit self-generated pressures to circumvent the work of buccal pumping.
This is really neat. The undulatory motion of swimming with the fins moves the head back and forth in phase such that the work of breathing is reduced, and the sensitivity of the lateral line is optimized. It's a three-for-one gain with no tradeoff in cost.

Life requires the successful, simultaneous execution of basic physiological functions. The coordination of these functions usually relies on distinct neural networks that run in parallel. Over the past several decades, a number of studies have demonstrated that the passive mechanical properties of the body can simplify individual functions, releasing them from the need for precise neural control. Here, we show that during aquatic axial undulation, head movements can allow seemingly disparate but fundamental functions to be coordinated simultaneously without tradeoffs.
Isn't evolution smart to pull this off? Actually, the authors didn't have much to say about evolution. Their only mention of evolution seems to falsify its expectations:

Given that the respiratory system is located in the head and the locomotory system is associated with the trunk, it is not unreasonable to assume that respiration and swimming would be decoupled. The contemporary view point is that the origin of the lung enabled respiratory-locomotor coupling to evolve in terrestrial animals.
Here, we discover that fishes swimming with body undulations also show respiratory-locomotor coupling....

But why would evolution optimize two or three things at once? Selection for traits can only act on immediate benefit from a random mutation. Like they say, "it is not unreasonable to assume" that selection for benefit in one trait would be independent of selection for other traits. The "contemporary view" may be that the lung "enabled" coupling, but if that were a useful idea, they would have said more about it. They didn't. We know from experience, however, that when engineers succeed in optimizing multiple things at once without tradeoffs, they win prizes and promotions for intelligent work.

More evidence that this work supports intelligent design is seen in their desire to imitate it. "The power of this simple control architecture is that it can be universally applied to any size and species of undulating fish, as well as to autonomous, underwater vehicles," they note. Yet the salmon seen bobbing their heads in Living Waters beat engineers to it. Engineers can just imitate what they see and win a design prize.

Non-Clogging Filters

Another case of intelligent design was announced in a second paper in Nature Communications. Biologists from the College of William and Mary liked this design so much, they immediately thought of how to apply it. Notice that the design is found in birds and mammals as well as fish.

Suspension-feeding fishes such as goldfish and whale sharks retain prey without clogging their oral filters, whereas clogging is a major expense in industrial crossflow filtration of beer, dairy foods and biotechnology products. Fishes' abilities to retain particles that are smaller than the pore size of the gill-raker filter, including extraction of particles despite large holes in the filter, also remain unexplained. Here we show that unexplored combinations of engineering structures (backward-facing steps forming d-type ribs on the porous surface of a cone) cause fluid dynamic phenomena distinct from current biological and industrial filter operations. This vortical cross-step filtration model prevents clogging and explains the transport of tiny concentrated particles to the oesophagus using a hydrodynamic tongue. Mass transfer caused by vortices along d-type ribs in crossflow is applicable to filter-feeding duck beak lamellae and whale baleen plates, as well as the fluid mechanics of ventilation at fish gill filaments.
A hydrodynamic tongue -- what a concept! Fish "engineer" previously unknown flow patterns to transport the particles they need into their esophagus. Those humpback whales seen in Living Waters use this technique as they gulp krill with their huge mouths, and the small tropical fish do it with their gills. The ducks in Flight: The Genius of Birds do it with their beaks. Who taught a fish, a duck, and a whale about fluid dynamics? It must have been natural selection. Tell us, please, how that came about:

In addition to the ecological and evolutionary relevance, these problems are of substantial interest to industrial filtration engineers who seek to reduce the major operating expenses associated with clogging.
One reads with bated breath for an evolutionary explanation that never comes.

As more than 30,000 fish species possess branchial arches that may form d-type ribs, potential vortex formation in the slots between branchial arches has substantial implications for the fluid dynamics of fish feeding and ventilation throughout ontogeny and evolution. Vortical cross-step filtration could be applicable to feeding in a diversity of fish species. In addition, many filtration structures involved in vertebrate suspension feeding are composed of d-type ribs in crossflow, including fish gill rakers, tadpole gill filters, bird beak lamellae and whale baleen plates, suggesting that principles of vortical cross-step filtration could have widespread application.
And that's it. That's all they have to say about evolution. This beautifully designed trait, so envied by engineers, is found in all these unrelated animals. How? Because "principles of vertical cross-step filtration" work, and are found all over the animal kingdom, they must have evolved. Does that make any sense?

It should be clear to anyone that intelligent design did the heavy lifting in both papers. Evolution played no role in the experimental setup, the explanation, or the application in either case. As usual, evolution only tags along in the role of post-hoc narrative gloss.

The 'talking ape' vs. Darwin

Language as an Evolutionary Conundrum
David Klinghoffer February 26, 2016 6:10 AM

In Chapter 10 of his new book Evolution: Still a Theory in Crisis, Michael Denton argues for the proposition that language and the higher intellectual faculties -- the gifts that uniquely make us human -- arose by saltation. In other words, they are gifts -- sudden ones. Denton's view, as he makes clear, has precedents reaching from Alfred Russel Wallace to linguist Noam Chomsky.

In a nice coincidence, Chomsky and MIT colleague Robert C. Berwick are just out with a book of their own, from MIT Press, provocatively titled Why Only Us: Language and Evolution. To be sure, Chomsky and Berwick are not advocates of Denton's structuralist take on the theory of intelligent design. Still, their own argument for language by saltation is not hard to reconcile with Denton's view.

The recognition that language poses a problem for Darwinian gradualism is presumably what makes linguist Vyvyan Evans uneasy about the book, which Dr. Evans reviews in New Scientist:

Their argument goes like this. As our capability for grammar is genetically programmed, and as no other species has language, it stands to reason that language emerged fairly suddenly, in one fell swoop, because of a random mutation. This is what the authors refer to as the "gambler's-eye view" in contrast to a "gene's-eye view" of evolution. The sudden appearance of language occurred perhaps no more than 80,000 years ago, just before modern humans engaged in an out-of-Africa dispersion.

A sudden "random mutation"...

But to be convinced by this, the reader has to swallow a number of sub-arguments that are debatable at best. For one thing, the authors presume the Chomskyan model of human language -- that the rudiments of human grammar (or syntax) are unlearnable without an innate knowledge of grammar. Its position seems less reasonable today that it once did.

Remember, as surly geneticist Dan Grauer formulates the 12th and final of his principles of new-Darwinism (Evolution News pointed this out yesterday), "Homo sapiens does not occupy a privileged position in the grand evolutionary scheme." A sudden gift, mutation, call it what you will, endowing our ancient ancestors alone with language is thus, on principle, to be disallowed. Language must be shared with other, non-human creatures. And so it is, Evans assures readers.

[R]esearch in primatology and animal behaviour suggests that some of the precursors for language do exist in other species, ranging from European starlings to chimpanzees -- with the latter using a sophisticated gestural form of communication in the wild. In fact, gesture may well have been the medium that incubated language until ancestral humans evolved the full-blown capacity for it.

Yet no one would confuse the most eloquent chimp "gestures" with modern sign language. That leaves in place the question of where language, whether communicating through hand or mouth, came from.

The "scientific consensus" cannot accept saltations of such a staggering kind:

Ultimately, Why Only Us is something of a curiosity. It takes a reverse engineering perspective on the question of how language evolved. It asks, what would language evolution amount to if the Chomskyan proposition of universal grammar were correct? The answer is language as a mutation that produces a phenotype well outside the range of variation previously existing in the population -- a macromutation. This flies in the face of the scientific consensus. Indeed, the book attempts to make a virtue of disagreeing with almost everyone on how language evolved.

Evans makes an interesting point. If the sudden mutation occurred in one person, it would provide no benefit since there would be no one to talk to. Did the "random mutation," the gift, then occur in a pair of individuals, living in the same time and place? Don't even think of going there. All parties to the argument are agreed on that. Evans:

The reader is asked to swallow the following unlikely implication of their logic: language didn't evolve for communication, but rather for internal thought. If language did evolve as a chance mutation, without precedent, then it first emerged in one individual. And what is the value of language as a communicative tool when there is no one else to talk to? Hence, the evolutionary advantage of language, once it emerged, must have been for something else: assisting thought.

For the spectator, it's not without pleasure to see evolutionists going at each other this way. Evans accuses Chomsky and Berwick of "reverse engineering" -- but more orthodox Darwinian "perspectives" do the very same thing. They assume the negation of the human exceptionalist view and impose that principle, as Evolution News suggested, on whatever is observed.

Every take on the origin of language that leaves the creative work entirely to one or more "random mutations" is doomed. We will be excerpting Denton's Chapter 10 in good time. Stay tuned.

Editor's note: Get your copy of Evolution: Still a Theory in Crisis now. For a limited time, you'll enjoy a 30 percent discount at CreateSpace by using the discount code QBDHMYJH.

Free dessert as well?

Get Out of Jail Free: Playing Games in an RNA World
Evolution News & Views September 23, 2013 5:20 AM

Four Darwinian mathematicians and biologists from New York University (one from Puerto Rico) think that RNA molecules played games to invent life. Even if the RNA could spontaneously form, why would mindless molecules scheme to create a universal, nearly optimal genetic code via a pointless game?

Jee, Sundstrom, Massey and Mishra, writing in the Royal Society Interface, ask, "What can information-asymmetric games tell us about the context of Crick's 'frozen accident'?" Francis Crick viewed the origin of the genetic code as an accident that caught on and became universal. But how did gene sequences become associated with polypeptide sequences having function? They know that the genetic code, as is, is pretty darn good:

The genetic code, the mapping of nucleic acid codons to amino acids via a set of tRNA and aminoacylation machinery, is near-universal and near-immutable. In addition, the code is also near-optimal in terms of error minimization, i.e. tRNAs recognizing similar codons may be mistaken for each other during translation, yet these mistakes often have no negative impact on translation because similar codons map to identical amino acids or ones with similar physiochemical properties. Biochemists have long wondered: If immutability and universality were early properties (i.e. the genetic code was a "frozen accident"), then how could natural selection encourage error-minimization? If selection for an error minimizing genetic code predated immutability and universality, then why is the standard code less than optimal? (Emphasis added.)

Although "numerous models have been proposed" to explain this "apparent paradox," they each have problems, such as "premature freezing" of the code, or in the case of neutral evolution, inability to explain the code's universality. So these guys enter the fray.

Like Crick, they know that hitting upon a functional enzyme by chance in the space of random polypeptides is improbable to the extreme:

Because of the relative length and complexity of modern enzymes, it may be possible that the earliest peptides were not enzymes in the traditional sense. To "accidentally" stumble upon genes encoding such enzymes at the same time an error minimizing code occurred by chance, as suggested by Crick, has vanishingly small probability.

Their job, therefore, is to find pointless polypeptides associating with pointless polynucleotides in some sort of "signaling game" that makes them both "help" each other over time until universality, immutability and optimality reach an equilibrium that just happens to be near maximum. Their very helpful tool in this endeavor is game theory:

As suggested by Maynard-Smith, games in a biological setting, unlike traditional ones in game theory, might not require "rational agents." A population of animals of the same species, for instance, may over the course of evolution behave according to game-theoretic principles even though none of those animals is a "rational agent," in a traditional sense. A species may "learn" over evolutionary time to select certain behaviors through random mutations, genetic drift, and selection, and ultimately reach a Nash equilibrium, in this case defined as an evolutionarily stable state in which each agent does not deviate strategies so long as all other agents in the system also do not deviate from their adopted strategies. "Utility" in the game-theoretic sense physically manifests as reproductive fitness.

They put "utility" in quotes, because it takes a rational agent to determine what is useful. What they are looking for is an equilibrium between mindless players aiming nowhere. Life and optimal coding become incidental byproducts of the equilibrium. Is there any other chemical reaction in nature that arrives at such coding specificity without trying? One might get an oscillation between states, but not a code that specifies a function.

Overall this paper presents a framework for studying signaling game dynamics in instances where both message length and distortion are factors in the utility of both senders and receivers. Although we have applied the framework here primarily to the evolution of the genetic code, similar analyses might be applied to the evolution of many other seemingly fixed processes, where the evolutionary clock appears to have frozen a biological process prematurely to an arbitrary conventional structure.

Well, best of luck. We find them personifying the molecules. The molecules adopt "strategies." They "learn" over evolutionary time. They send "information" or receive it, as they "signal" each other with "messages." Does this make any sense? Take out the words implying personality, goal and purpose, and the idea seems silly, much more so than for antelope strategizing to outwit a lion. These are just dumb molecules!

It's not necessary to delve into the equations of their "game," because math cannot rescue a bad premise. What we find them doing is weaving a fantastic tale in their own imaginations, starting with already-existing complex molecules in a mythical RNA world (which has its own problems).

It is usually hypothesized that the genetic code formed in the context of an RNA world, gradually exposed to an emerging amino acid world. We envision a scenario with two agents: proto-mRNA (strings of codons with information) and sets of proto-tRNA (RNAs with distinct anticodons, each able to bind a particular amino acid). In a given generation proto-mRNA and a particular set of proto-tRNA interact. The pair replicates via RNA replicase ribozymes. However, they may also chemically aid their own replication through the accurate production of proteins (possible identities of these proteins are stipulated in Discussion).

These gamers assume the existence of (1) RNA ribozymes capable of replication, (2) information, (3) transfer RNA with distinct anticodons, (4) accurate production of proteins. Who, we might ask, "usually hypothesized" such things? They should be dismissed from the science lab on account of "envisioning scenarios" instead of doing real chemistry.

Many other problems are completely ignored or glossed over in their visionary scenario, such as the problem of getting one-handed amino acids and sugars by chance. They also assume that natural selection would operate at the scale of molecules in an RNA world before life -- a fallacy, because natural selection requires not just replication, but accurate replication, accurate enough to avoid error catastrophe.

The news release from New York University, as expected, sanctifies this proposal as the inspired work of genius professors. It also won the uncritical acclaim of Science Daily and other news outlets: "Researchers have created a model that may explain the complexities of the origins of life." Be sure to thank the NSF for funding this paper in a down economy.

Well, It Could Happen

Throughout this weird paper, the authors display reckless imagination with frequent assertions that various miracles of chance "could" or "may" or "might" happen. (If a pig had wings, we all know, it "could" fly, provided it also had flight muscles, feathers, avian lungs, and all -- watch Flight.) Added to the heavy spicing of "possibility" words, they frequently endowed the molecules with goal-directed behavior, personifying them as willing game players. Here is but one egregious example from the abstract:

Such a framework suggests that cellularity may have emerged to encourage coordination between RNA species and sheds light on other aspects of RNA world biochemistry yet to be fully understood.

So, out of nowhere, "cellularity emerges" to "encourage coordination." Are you seeing any light that has been shed yet? Later, the personification, assumed goal-seeking, and speculation gets even worse:

The model presented here demonstrates that the modern genetic code evolved most likely by a combination of previously hypothesized forces, involving neutral and selective evolution. Whereas a natural predisposition toward an error-minimizing code is not a necessary condition for an optimized genetic code, neutral evolution may have been an important force in establishing universality. At the same time, selective pressure can provide a powerful impetus for a genetic code to move toward error-minimization and, somewhat surprisingly, also enforce its immutability so as to maintain compatibility with the genome.

Who does the enforcing? Who does the establishing? Who does the maintaining? Who follows an impetus to move toward error minimization? What is an error, anyway, to a mindless molecule? This is crazy, but not crazy enough for the Royal Society to publish it.

They get away with this because it fits the requirement of naturalism: "No intelligence allowed." Within that constraint, they follow Finagle's 6th Rule: "Do not believe in miracles. Rely on them."

Good-bye, RNA World

The authors feel somewhat justified in "envisioning" their make-believe "scenario" on the grounds that "Evidence for such a world [RNA world]... is growing." Too bad this paper came out about the same time that Steven Benner, a veteran origin-of-life researcher, poured cold water on the idea at the Goldschmidt Conference in Florence in August. Here's what he said happens to ribose (an essential sugar for RNA) and other biomolecules when exposed to the watery conditions assumed on the early earth, according to an NBC News article:

The early environment on Earth, however, was challenging to the rise of life as we know it, at least in Benner's view. One of the biggest challenges has to do with the process by which organic molecules gave rise to life's chemical building blocks: RNA, DNA and proteins.

If left to themselves, adding energy to organic molecules just tends to turn them into tar or an oily substance. That's what Benner calls the "tar paradox": How could organic materials ever give rise to biopolymers like DNA?

Science Magazine describes the depressing picture:

However and wherever life began, one thing is sure: Its first organic building blocks, called hydrocarbons, had a number of hurdles to clear before evolving into living cells. Fed with heat or light and left to themselves, hydrocarbons tend to turn into useless tarlike substances. And even when complex molecules like RNA (most biologists' best guess for the first genetic molecule) arise, water quickly breaks them down again.

The RNA-world scenario is so hopeless, in fact, that Benner took the extreme step of claiming that life must have formed on Mars (on dry ground under special conditions), and then got transported to earth via meteors. While some reporters leaped onto the sci-fi suggestion that "We may all be Martians!" (e.g., Space.com), thinking people will surely catch the cry of desperation in such a proposal.

Conclusions

So, even if one were willing to grant the time of day to Jee et al.'s "game theory" notion, Darwinians can't even get the starting materials to play with. It would be more realistic for them to start with balls of tar, and racemic biological gunk broken down by water.

Any way you slice it, the "game theory" approach of these imagineers is an exercise in futility. And that's before even thinking rationally about the problem of the origin of genetic information, discussed in depth in Stephen Meyer's Signature in the Cell.

What a crazy world Darwinism and methodological naturalism (MN) has bequeathed us. The way out is to relax the arbitrary MN rule, to think outside the naturalistic box, and once again, to follow the evidence where it leads. Optimized codes do not "arise" from "frozen accidents." From our universal experience, they are products of intelligent design. That's no game. That's no "scenario." It's reality.

Saturday 5 January 2019

On the Aristotelian soul and materialism.

“Emergence” and the Soul
Michael Egnor


Philosopher Tim O’Connor at Indiana University has a fine essay that asks, “Do We Have Souls?” He answers in the affirmative, and he provides insightful critiques of materialism and Cartesian dualism.

On Cartesian dualism:

Descartes [argued] a softened variant of Plato’s mind-body dualism. The material world ultimately consists in material particles wholly governed by mechanical laws of motion. The human soul is an immaterial substance, but (departing from Plato) its existence and proper functioning intimately depends, causally, on the healthy functioning of the brain. It is not naturally immortal; if it survives death, it must be a consequence of God’s sustaining it apart from the body. We still have a sharp dualism: bodies large and small generally operate according to principles distinct in kind from those according to which souls/minds do. Their convergence in the human brain has to be taken as a brute given, a contingent connection perhaps established by the power of God. 

Cartesian dualism, which is a crucial philosophical error despite its dualist assertion, is Platonic in nature. What’s wrong with Cartesian dualism is its abandonment of hylemorphic (matter-form) metaphysics. Descartes describes nature as an unnatural blending of two substances — res cogitans, the thinking substance, and res extensa, which is “matter” defined as that which is extended in space. As metaphysics, it is pitiful, and wholly lacks the coherence and elegant explanatory power of Aristotelian hylemorphism.

Materialism, in its modern form, is essentially Cartesian dualism with the res cogitans discarded. Materialists strip nature of all that is intelligible, and struggle unsuccessfully to provide a coherent understanding of the only thing left: matter, understood as mere extension in space.

O’Connor points out that without res cogitans the materialists’ reduction of Cartesian dualism offers merely a

reductive image of “man a machine.” It is essentially Descartes’ picture of reality minus souls. According to it, human persons, no less than inanimate chunks of the physical world, can be entirely understood (in principle) in terms of the interactions of the body’s basic parts. Psychological states that Descartes assigned to the soul are here taken either to be epiphenomenal — having no influence on other psychological states or bodily behavior — or as (somehow) consisting in complex states of the brain.

Many contemporary thinkers follow [materialists] in dismissing philosophical and religious talk of “the soul” as having no place within our ever-growing scientific knowledge concerning the embodied natures of human persons. But insofar as there is more than one notion of the soul, it may be no less misleading to state simply that there “is no such thing as the soul” than it would be to affirm its existence without qualification — one may be taken to deny not only unwanted associations but also others that one embraces or (as I will suggest) should embrace. Let us take a different, rehabilitative tack and use the word “soul” as a placeholder for whatever underlies the constellation of capacities of thought, emotion, and agency that we observe in mature, fully functioning human beings. Then our question shifts from the categorical Do we have souls? to the open-ended What is the nature of “the” soul (or “ensoulment”) and its current and future limits? This way of posing our question invites us to consider answers lying between the extremes offered by Descartes and [materialists].

O’Connor offers an Aristotelian alternative. He notes that materialist philosophers and scientists

have lost sight of the “Aristotelian” alternative. Aristotle’s specific philosophical account of objects as form-matter compounds is no more appealing to many of us than are his antiquated physics and biology. But his broader nonreductionist, nondualistic vision is very much worth developing in contemporary terms. A number of scientists and philosophers attracted to this vision have latched onto the term “emergentism,” and I will follow them here. But we should be careful to note that this term has meant different things to different thinkers. Here I mean a view on which human persons, other sentient animals, and possibly a wider array of complex systems are wholly materially composed while having irreducible and efficacious system-level features. These features are originated and sustained by organizational properties of the systems (in animals, by properly functioning brain and nervous systems) while also having in turn causal influence on components of the system in its evolution over time. That is, emergent systems involve an interplay of “bottom-up” and “top-down” causal factors. While they are not fundamental building blocks of the world in the way that fundamental particles or Descartes’s souls would be, they nonetheless are natural unities, causally basic entities.

O’Connor’s endorsement of a general Aristotelian approach to understanding the mind (soul) is welcome, but I am unsympathetic to the concept of “emergence” as having any value in the debate about the nature of the mind and its relation to the material brain. I don’t believe that “emergence” really represents an Aristotelian or Thomistic view, and emergence is fraught with metaphysical muck.

Emergence is generally taken to mean that higher order complex systems have different properties than we can infer from the lower order components of the systems. A classic example is “wetness” as an emergent property of water molecules. There is nothing in our understanding of H2O at the molecular level that would lead us to predict that billions of H2O molecules in the liquid state would feel “wet” on our fingertip. Wet is not a state described or predicted by quantum mechanics. Yet water certainly does feel wet. According to the emergentists, wetness is thus an emergent property of water molecules.

Emergentists describe the mind in an analogous manner. There is nothing in neurotransmitters or the biochemistry of neurons that would lead us to expect thoughts to emerge. Yet when neural tissue is properly organized, thought emerges. The mind, according to emergentists, is an emergent property of brain matter, just as wetness is an emergent property of water molecules.

There are several problems with this view. First, I don’t believe that it is appropriate to ascribe the concept of emergence to Aristotle. Aristotle was an essentialist: he believed that substances have essences that characterize them as a whole, and that the essence (roughly the composite of matter and form that can be defined) is not reducible to its parts. Aristotle saw essence as fundamental, and essence (the whole) as more real than parts. Emergentists, on the other hand, see the parts as fundamental and most real, and emergent properties (analogous to Aristotle’s essences) as elaborations on the fundamental (molecular) reality. Aristotle saw the fundamental reality as the whole. Emergentists see the fundamental reality as the parts — for the emergentist, the whole emerges from the parts, but is not the fundamental thing.

For materialists, emergence is a sort of get-out-of-jail free card. Materialism, taken seriously, is nonsense. Obviously, the mind cannot be explained wholly by reference to matter extended in space. Mental things share nothing — nothing — in common with matter. Thoughts are intentional (refer to other things), private, dimensionless, massless, not composite, etc. Matter is non-intentional (doesn’t inherently refer to anything else), public, has dimensions and mass, is composite, etc. Obviously, materialism as a metaphysical system has nothing to offer for the understanding of the mind.

Faced with this rather obvious impediment, some materialists invoke emergence. It may be true that matter shares nothing in common with thought, the materialist stammers, but thought emerges from matter. It’s a kind of magic that Houdini would admire. When you have no explanation, just say it happens and that explains it.

Emergence explains nothing. It merely means that the materialist has no explanation whatsoever for the mind, and would rather not dwell on the question.

And there are deeper problems with emergence as a theory of mind and as a metaphysical concept.

First, while it might be (marginally) coherent to invoke emergence to explain wetness and such, it is worth noting that emergence offers no possible explanation for differences in ontology. Water feels wet when touched, but the emergentist is not claiming that water molecules in becoming wet have become a fundamentally different kind of thing. The water molecules haven’t changed. They are still just water molecules, nothing more or less. They just feel wet.

But emergence as applied to the brain and mind, unlike to water and wet, asserts an ontological difference. Emergentists assert that brain tissue becomes a completely different kind of thing — a thinking thing — when the mind magically emerges from matter. As a metaphysical concept, emergence applied to water and the like is tenuous enough. It plainly offers no explanation whatsoever for how a completely different kind of thing — mind — is produced by brain matter. That’s a bridge too far, even for Houdini.

The second problem for emergence as an explanation for the mind can be understood by considering what we mean when we say that a property of a whole emerges from its parts. What we invariably mean when we talk about emergence in the natural world is that the whole is perceptually different from its parts. Water doesn’t really become something different when we take billions of water molecules and put them on our fingertip. It just feels different from what we would have expected, given our knowledge of physics of individual water molecules.

Emergence always refers to a perceptual or intellectual surprise. A property is said to be emergent if we didn’t expect it to be characteristic of a whole based on our understanding of its parts. Emergence is a mental phenomenon. It is a perceptual surprise, not a magical property somehow evoked by adding a lot of little parts together.

Emergence, as a perceptual surprise, can’t explain the mind because emergence presupposes the mind. A genuine explanation can’t presuppose that which it purports to explain.


Emergence as a theory of mind is junk philosophy and junk science. It’s circular reasoning — the “emergent” explanation for the mind-brain relationship boils down to “It’s surprising!” The only reason to invoke emergence is to defend materialism from refutation by reality. It is a tactic, not an explanation. As such, it is a favorite of materialists, who, lacking explanations, are in dire need of tactics.

On Gehenna;The Watchtower Society's commentary.

GEHENNA


(Ge·henʹna) [Gr. form of the Heb. Geh Hin·nomʹ, “Valley of Hinnom”].

This name appears 12 times in the Christian Greek Scriptures, and whereas many translators take the liberty to render it by the word “hell,” a number of modern translations transliterate the word from the Greek geʹen·na.—Mt 5:22, Ro, Mo, ED, NW, BC (Spanish), NC (Spanish), also the footnotes of Da and RS.

The deep, narrow Valley of Hinnom, later known by this Greek name, lay to the S and SW of ancient Jerusalem and is the modern-day Wadi er-Rababi (Ge Ben Hinnom). (Jos 15:8; 18:16; Jer 19:2, 6; see HINNOM, VALLEY OF.) Judean Kings Ahaz and Manasseh engaged in idolatrous worship there, which included the making of human sacrifices by fire to Baal. (2Ch 28:1, 3; 33:1, 6; Jer 7:31, 32; 32:35) Later, to prevent such activities there in the future, faithful King Josiah had the place of idolatrous worship polluted, particularly the section called Topheth.—2Ki 23:10.

No Symbol of Everlasting Torment. Jesus Christ associated fire with Gehenna (Mt 5:22; 18:9; Mr 9:47, 48), as did the disciple James, the only Biblical writer besides Matthew, Mark, and Luke to use the word. (Jas 3:6) Some commentators endeavor to link such fiery characteristic of Gehenna with the burning of human sacrifices that was carried on prior to Josiah’s reign and, on this basis, hold that Gehenna was used by Jesus as a symbol of everlasting torment. However, since Jehovah God expressed repugnance for such practice, saying that it was “a thing that I had not commanded and that had not come up into my heart” (Jer 7:31; 32:35), it seems most unlikely that God’s Son, in discussing divine judgment, would make such idolatrous practice the basis for the symbolic meaning of Gehenna. It may be noted that God prophetically decreed that the Valley of Hinnom would serve as a place for mass disposal of dead bodies rather than for the torture of live victims. (Jer 7:32, 33; 19:2, 6, 7, 10, 11) Thus, at Jeremiah 31:40 the reference to “the low plain of the carcasses and of the fatty ashes” is generally accepted as designating the Valley of Hinnom, and a gate known as “the Gate of the Ash-heaps” evidently opened out onto the eastern extremity of the valley at its juncture with the ravine of the Kidron.—Ne 3:13, 14.

Therefore, the Biblical evidence concerning Gehenna generally parallels the traditional view presented by rabbinic and other sources. That view is that the Valley of Hinnom was used as a place for the disposal of waste matter from the city of Jerusalem. (At Mt 5:30 Ph renders geʹen·na as “rubbish heap.”) Concerning “Gehinnom,” the Jewish commentator David Kimhi (1160?-1235?), in his comment on Psalm 27:13, gives the following historical information: “And it is a place in the land adjoining Jerusalem, and it is a loathsome place, and they throw there unclean things and carcasses. Also there was a continual fire there to burn the unclean things and the bones of the carcasses. Hence, the judgment of the wicked ones is called parabolically Gehinnom.”

Symbolic of Complete Destruction. It is evident that Jesus used Gehenna as representative of utter destruction resulting from adverse judgment by God, hence with no resurrection to life as a soul being possible. (Mt 10:28; Lu 12:4, 5) The scribes and Pharisees as a wicked class were denounced as ‘subjects for Gehenna.’ (Mt 23:13-15, 33) To avoid such destruction, Jesus’ followers were to get rid of anything causing spiritual stumbling, the ‘cutting off of a hand or foot’ and the ‘tearing out of an eye’ figuratively representing their deadening of these body members with reference to sin.—Mt 18:9; Mr 9:43-47; Col 3:5; compare Mt 5:27-30.

Jesus also apparently alluded to Isaiah 66:24 in describing Gehenna as a place “where their maggot does not die and the fire is not put out.” (Mr 9:47, 48) That the symbolic picture here is not one of torture but, rather, of complete destruction is evident from the fact that the Isaiah text dealt, not with persons who were alive, but with “the carcasses of the men that were transgressing” against God. If, as the available evidence indicates, the Valley of Hinnom was a place for the disposal of garbage and carcasses, fire, perhaps increased in intensity by the addition of sulfur (compare Isa 30:33), would be the only suitable means to eliminate such refuse. Where the fire did not reach, worms, or maggots, would breed, consuming anything not destroyed by the fire. On this basis, Jesus’ words would mean that the destructive effect of God’s adverse judgment would not cease until complete destruction was attained.


Figurative Use. The disciple James’ use of the word “Gehenna” shows that an unruly tongue is itself a world of unrighteousness and that one’s whole round of living can be affected by fiery words that defile the speaker’s body. The tongue of such a one, “full of death-dealing poison” and so giving evidence of a bad heart condition, can cause the user to be sentenced by God to go to the symbolic Gehenna.—Jas 3:6, 8; compare Mt 12:37; Ps 5:9; 140:3; Ro 3:13.

Why we can dare to deny:By David Berlinski

The Deniable Darwin



The fossil record is incomplete, the reasoning flawed; is the theory of evolution fit to survive?
  Charles Darwin presented On the Origin of Species to a disbelieving world in 1859 - three years after Clerk Maxwell had published "On Faraday's Lines of Force," the first of his papers on the electromagnetic field. Maxwell's theory has by a process of absorption become part of quantum field theory, and so a part of the great canonical structure created by mathematical physics.
By contrast, the final triumph of Darwinian theory, although vividly imagined by biologists, remains, along with world peace and Esperanto, on the eschatological horizon of contemporary thought.
"It is just a matter of time," one biologist wrote recently, reposing his faith in a receding hereafter, "before this fruitful concept comes to be accepted by the public as wholeheartedly as it has accepted the spherical earth and the sun-centered solar system." Time, however, is what evolutionary biologists have long had, and if general acceptance has not come by now, it is hard to know when it ever will.
In its most familiar, textbook form, Darwin's theory subordinates itself to a haunting and fantastic image, one in which life on earth is represented as a tree. So graphic has this image become that some biologists have persuaded themselves they can see the flowering tree standing on a dusty plain, the mammalian twig obliterating itself by anastomosis into a reptilian branch and so backward to the amphibia and then the fish, the sturdy chordate line - our line, cosa nostra - moving by slithering stages into the still more primitive trunk of life and so downward to the single irresistible cell that from within its folded chromosomes foretold the living future.
This is nonsense, of course. That densely reticulated tree, with its lavish foliage, is an intellectual construct, one expressing the hypothesis of descent with modification.
Evolution is a process, one stretching over four billion years. It has not been observed. The past has gone to where the past inevitably goes. The future has not arrived. The present reveals only the detritus of time and chance: the fossil record, and the comparative anatomy, physiology, and biochemistry of different organisms and creatures. Like every other scientific theory, the theory of evolution lies at the end of an inferential trail.
The facts in favor of evolution are often held to be incontrovertible; prominent biologists shake their heads at the obduracy of those who would dispute them. Those facts, however, have been rather less forthcoming than evolutionary biologists might have hoped. If life progressed by an accumulation of small changes, as they say it has, the fossil record should reflect its flow, the dead stacked up in barely separated strata. But for well over 150 years, the dead have been remarkably diffident about confirming Darwin's theory. Their bones lie suspended in the sands of time-theromorphs and therapsids and things that must have gibbered and then squeaked; but there are gaps in the graveyard, places where there should be intermediate forms but where there is nothing whatsoever instead.1
Before the Cambrian era, a brief 600 million years ago, very little is inscribed in the fossil record; but then, signaled by what I imagine as a spectral puff of smoke and a deafening ta-da!, an astonishing number of novel biological structures come into creation, and they come into creation at once.
Thereafter, the major transitional sequences are incomplete. Important inferences begin auspiciously, but then trail off, the ancestral connection between Eusthenopteron and Ichthyostega, for example - the great hinge between the fish and the amphibia - turning on the interpretation of small grooves within Eusthenopteron's intercalary bones. Most species enter the evolutionary order fully formed and then depart unchanged. Where there should be evolution, there is stasis instead - the term is used by the paleontologists Stephen Jay Gould and Niles Eldredge in developing their theory of "punctuated equilibria" - with the fire alarms of change going off suddenly during a long night in which nothing happens.
The fundamental core of Darwinian doctrine, the philosopher Daniel Dennett has buoyantly affirmed, "is no longer in dispute among scientists." Such is the party line, useful on those occasions when biologists must present a single face to their public. But it was to the dead that Darwin pointed for confirmation of his theory; the fact that paleontology does not entirely support his doctrine has been a secret of long standing among paleontologists. "The known fossil record," Steven Stanley observes, "fails to document a single example of phyletic evolution accomplishing a major morphologic transition and hence offers no evidence that the gradualistic model can be valid."
Small wonder, then, that when the spotlight of publicity is dimmed, evolutionary biologists evince a feral streak, Stephen Jay Gould, Niles Eldredge, Richard Dawkins, and John Maynard Smith abusing one another roundly like wrestlers grappling in the dark.

Pause for the Logician

Swimming in the soundless sea, the shark has survived for millions of years, sleek as a knife blade and twice as dull. The shark is an organism wonderfully adapted to its environment. Pause. And then the bright brittle voice of logical folly intrudes: after all, it has survived for millions of years.
This exchange should be deeply embarrassing to evolutionary biologists. And yet, time and again, biologists do explain the survival of an organism by reference to its fitness and the fitness of an organism by reference to its survival, the friction between concepts kindling nothing more illuminating than the observation that some creatures have been around for a very long time. "Those individuals that have the most offspring," writes Ernst Mayr, the distinguished zoologist, "are by definition . . . the fittest ones." And in Evolution and the Myth of Creationism, Tim Berra states that "[f]itness in the Darwinian sense means reproductive fitness-leaving at least enough offspring to spread or sustain the species in nature."
This is not a parody of evolutionary thinking; it is evolutionary thinking. Que sera, sera.
Evolutionary thought is suffused in general with an unwholesome glow. "The belief that an organ so perfect as the eye," Darwin wrote, "could have been formed by natural selection is enough to stagger anyone." It is. The problem is obvious. "What good," Stephen Jay Gould asked dramatically, "is 5 percent of an eye?" He termed this question "excellent."
The question, retorted the Oxford professor Richard Dawkins, the most prominent representative of ultra-Darwinians, "is not excellent at all":
"Vision that is 5 percent as good as yours or mine is very much worth having in comparison with no vision at all. And 6 percent is better than 5, 7 percent better than 6, and so on up the gradual, continuous series."
But Dawkins, replied Phillip Johnson in turn, had carelessly assumed that 5 percent of an eye would see 5 percent as well as an eye, and that is an assumption for which there is little evidence. (A professor of law at the University of California at Berkeley, Johnson has a gift for appealing to the evidence when his opponents invoke theory, and vice versa.)
Having been conducted for more than a century, exchanges of this sort may continue for centuries more; but the debate is an exercise in irrelevance. What is at work in sight is a visual system, one that involves not only the anatomical structures of the eye and forebrain, but the remarkably detailed and poorly understood algorithms required to make these structures work.
"When we examine the visual mechanism closely," Karen K. de Valois remarked recently in Science, "although we understand much about its component parts, we fail to fathom the ways in which they fit together to produce the whole of our complex visual perception."
These facts suggest a chastening reformulation of Gould's "excellent" question, one adapted to reality: could a system we do not completely understand be constructed by means of a process we cannot completely specify?
The intellectually responsible answer to this question is that we do not know -- we have no way of knowing. But that is not the answer evolutionary theorists accept. According to Daniel Dennett (in Darwin's Dangerous Idea), Dawkins is "almost certainly right" to uphold the incremental view, because "Darwinism is basically on the right track." In this, he echoes the philosopher Kim Sterenly, who is also persuaded that "something like Dawkins's stories have got to be right" (emphasis added). After all, she asserts, "natural selection is the only possible explanation of complex adaptation."
Dawkins himself has maintained that those who do not believe a complex biological structure may be constructed in small steps are expressing merely their own sense of "personal incredulity." But in countering their animadversions he appeals to his own ability to believe almost anything. Commenting on the (very plausible) claim that spiders could not have acquired their web-spinning behavior by a Darwinian mechanism, Dawkins writes: "It is not impossible at all. That is what I firmly believe and I have some experience of spiders and their webs." It is painful to see this advanced as an argument.

Unflagging Success

Darwin conceived of evolution in terms of small variations among organisms, variations which by a process of accretion allow one species to change continuously into another. This suggests a view in which living creatures are spread out smoothly over the great manifold of biological possibilities, like colors merging imperceptibly in a color chart.
Life, however, is absolutely nothing like this. Wherever one looks there is singularity, quirkiness, oddness, defiant individuality, and just plain weirdness. The male redback spider (Latrodectus hasselti), for example, is often consumed during copulation. Such is sexual cannibalism -- the result, biologists have long assumed, of "predatory females overcoming the defenses of weaker males." But it now appears that among Latrodectus basselti, the male is complicit in his own consumption. Having achieved intromission, this schnook performs a characteristic somersault, placing his abdomen directly over his partner's mouth. Such is sexual suicide-awfulness taken to a higher power.2
It might seem that sexual suicide confers no advantage on the spider, the male passing from ecstasy to extinction in the course of one and the same act. But spiders willing to pay for love are apparently favored by female spiders (no surprise, there); and female spiders with whom they mate, entomologists claim, are less likely to mate again. The male spider perishes; his preposterous line persists.
This explanation resolves one question only at the cost of inviting another: why such bizarre behavior? In no other Latrodectus species does the male perform that obliging somersault, offering his partner the oblation of his life as well as his love. Are there general principles that specify sexual suicide among this species, but that forbid sexual suicide elsewhere? If so, what are they?
Once asked, such questions tend to multiply like party guests. If evolutionary theory cannot answer them, what, then, is its use? Why is the Pitcher plant carnivorous, but not the thorn bush, and why does the Pacific salmon require fresh water to spawn, but not the Chilean sea bass? Why has the British thrush learned to hammer snails upon rocks, but not the British blackbird, which often starves to death in the midst of plenty? Why did the firefly discover bioluminescence, but not the wasp or the warrior ant; why do the bees do their dance, but not the spider or the flies; and why are women, but not cats, born without the sleek tails that would make them even more alluring than they already are?
Why? Yes, why? The question, simple, clear, intellectually respectable, was put to the Nobel laureate George Wald. "Various organisms try various things," he finally answered, his words functioning as a verbal shrug, "they keep what works and discard the rest."
But suppose the manifold of life were to be given a good solid yank, so that the Chilean sea bass but not the Pacific salmon required fresh water to spawn, or that ants but not fireflies flickered enticingly at twilight, or that women but not cats were born with lush tails. What then? An inversion of life's fundamental facts would, I suspect, present evolutionary biologists with few difficulties. Various organisms try various things. This idea is adapted to any contingency whatsoever, an interesting example of a Darwinian mechanism in the development of Darwinian thought itself.
A comparison with geology is instructive. No geological theory makes it possible to specify precisely a particular mountain's shape; but the underlying process of upthrust and crumbling is well understood, and geologists can specify something like a mountain's generic shape. This provides geological theory with a firm connection to reality. A mountain arranging itself in the shape of the letter "A" is not a physically possible object; it is excluded by geological theory.
The theory of evolution, by contrast, is incapable of ruling anything out of court. That job must be done by nature. But a theory that can confront any contingency with unflagging success cannot be falsified. Its control of the facts is an illusion.

Sheer Dumb Luck

Chance alone," the Nobel Prize-winning chemist Jacques Monod once wrote, "is at the source of every innovation, of all creation in the biosphere. Pure chance, absolutely free but blind, is at the very root of the stupendous edifice of creation."
The sentiment expressed by these words has come to vex evolutionary biologists. "This belief," Richard Dawkins writes, "that Darwinian evolution is 'random,' is not merely false. It is the exact opposite of the truth." But Monod is right and Dawkins wrong. Chance lies at the beating heart of evolutionary theory, just as it lies at the beating heart of thermodynamics.
It is the second law of thermodynamics that holds dominion over the temporal organization of the universe, and what the law has to say we find verified by ordinary experience at every turn. Things fall apart. Energy, like talent, tends to squander itself. Liquids go from hot to lukewarm. And so does love. Disorder and despair overwhelm the human enterprise, filling our rooms and our lives with clutter. Decay is unyielding. Things go from bad to worse. And overall, they go only from bad to worse.
These grim certainties the second law abbreviates in the solemn and awful declaration that the entropy of the universe is tending toward a maximum. The final state in which entropy is maximized is simply more likely than any other state. The disintegration of my face reflects nothing more compelling than the odds. Sheer dumb luck.
But if things fall apart, they also come together. Life appears to offer at least a temporary rebuke to the second law of thermodynamics. Although biologists are unanimous in arguing that evolution has no goal, fixed from the first, it remains true nonetheless that living creatures have organized themselves into ever more elaborate and flexible structures. If their complexity is increasing, the entropy that surrounds them is decreasing. Whatever the universe-as-a-whole may be doing -- time fusing incomprehensibly with space, the great stars exploding indignantly -- biologically things have gone from bad to better, the show organized, or so it would seem, as a counterexample to the prevailing winds of fate.
How so? The question has historically been the pivot on which the assumption of religious belief has turned. How so? "God said: 'Let the waters swarm with swarms of living creatures, and let fowl fly above the earth in the open firmament of heaven."' That is how so. And who on the basis of experience would be inclined to disagree? The structures of life are complex, and complex structures get made in this, the purely human world, only by a process of deliberate design. An act of intelligence is required to bring even a thimble into being; why should the artifacts of life be different?
Darwin's theory of evolution rejects this counsel of experience and intuition. Instead, the theory forges, at least in spirit, a perverse connection with the second law itself, arguing that precisely the same force that explains one turn of the cosmic wheel explains another: sheer dumb luck.
If the universe is for reasons of sheer dumb luck committed ultimately to a state of cosmic listlessness, it is also by sheer dumb luck that life first emerged on earth, the chemicals in the pre-biotic seas or soup illuminated and then invigorated by a fateful flash of lightning. It is again by sheer dumb luck that the first self-reproducing systems were created. The dense and ropy chains of RNA -- they were created by sheer dumb luck, and sheer dumb luck drove the primitive chemicals of life to form a living cell. It is sheer dumb luck that alters the genetic message so that, from infernal nonsense, meaning for a moment emerges; and sheer dumb luck again that endows life with its opportunities, the space of possibilities over which natural selection plays, sheer dumb luck creating the mammalian eye and the marsupial pouch, sheer dumb luck again endowing the elephant's sensitive nose with nerves and the orchid's translucent petal with blush.
Amazing. Sheer dumb luck.

Life, Complex Life

Physicists are persuaded that things are in the end simple; biologists that they are not. A good deal depends on where one looks. Wherever the biologist looks, there is complexity beyond complexity, the entanglement of things ramifying downward from the organism to the cell. In a superbly elaborated figure, the Australian biologist Michael Denton compares a single cell to an immense automated factory, one the size of a large city:
On the surface of the cell we would see millions of openings, like the portholes of a vast space ship, opening and closing to allow a continual stream of materials to flow in and out. If we were to enter one of these openings we would find ourselves in a world of supreme technology and bewildering complexity. We would see endless highly organized corridors and conduits branching in every direction away from the perimeter of the cell, some leading to the central memory bank in the nucleus and others to assembly plants and processing units. The nucleus itself would be a vast spherical chamber more than a kilometer in diameter, resembling a geodesic dome inside of which we would see, all neatly stacked together in ordered arrays, the miles of coiled chains of the DNA molecule.... We would notice that the simplest of the functional components of the cell, the protein molecules, were, astonishingly, complex pieces of molecular machinery....Yet the life of the cell depends on the integrated activities of thousands, certainly tens, and probably hundreds of thousands of different protein molecules.
And whatever the complexity of the cell, it is insignificant in comparison with the mammalian nervous system; and beyond that, far impossibly ahead, there is the human mind, an instrument like no other in the biological world, conscious, flexible, penetrating, inscrutable, and profound.
It is here that the door of doubt begins to swing. Chance and complexity are countervailing forces; they work at cross-purposes. This circumstance the English theologian William Paley (1743-1805) made the gravamen of his well-known argument from design:
Nor would any man in his senses think the existence of the watch, with its various machinery, accounted for, by being told that it was one out of possible combinations of material forms; that whatever he had found in the place where he found the watch, must have contained some internal configuration or other, and that this configuration might be the structure now exhibited, viz., of the works of a watch, as well as a different structure. It is worth remarking, it is simply a fact, that this courtly and old-fashioned argument is entirely compelling. We never attribute the existence of a complex artifact to chance. And for obvious reasons: complex objects are useful islands, isolated amid an archipelago of useless possibilities. Of the thousands of ways in which a watch might be assembled from its constituents, only one is liable to work. It is unreasonable to attribute the existence of a watch to chance, if only because it is unlikely. An artifact is the overflow in matter of the mental motions of intention, deliberate design, planning, and coordination. The inferential spool runs backward, and it runs irresistibly from a complex object to the contrived, the artificial, circumstances that brought it into being.
Paley allowed the conclusion of his argument to drift from man-made to biological artifacts, a human eye or kidney falling under the same classification as a watch. "Every indication of contrivance," he wrote, "every manifestation of design, exists in the works of nature; with the difference, on the side of nature, of being greater or more, and that in a degree which exceeds all computation.
In this drifting, Darwinists see dangerous signs of a non sequitur. There is a tight connection, they acknowledge, between what a watch is and how it is made; but the connection unravels at the human eye -- or any other organ, disposition, body plan, or strategy -- if only because another and a simpler explanation is available. Among living creatures, say Darwinists, the design persists even as the designer disappears.
"Paley's argument," Dawkins writes, "is made with passionate sincerity and is informed by the best biological scholarship of his day, but it is wrong, gloriously and utterly wrong."
The enormous confidence this quotation expresses must be juxtaposed against the weight of intuition it displaces. It is true that intuition is often wrong-quantum theory is intuition's graveyard. But quantum theory is remote from experience; our intuitions in biology lie closer to the bone. We are ourselves such stuff as genes are made on, and while this does not establish that our assessments of time and chance must be correct, it does suggest that they may be pertinent.

The Book of Life

The Discovery of DNA by James D. Watson and Francis Crick in 1952 revealed that a living creature is an organization of matter orchestrated by a genetic text. Within the bacterial cell, for example, the book of life is written in a distinctive language. The book is read aloud, its message specifying the construction of the cell's constituents, and then the book is copied, passed faithfully into the future.
This striking metaphor introduces a troubling instability, a kind of tremor, into biological thought. With the discovery of the genetic code, every living creature comes to divide itself into alien realms: the alphabetic and the organismic. The realms are conceptually distinct, responding to entirely different imperatives and constraints. An alphabet, on the one hand, belongs to the class of finite combinatorial objects, things that are discrete and that fit together in highly circumscribed ways. An organism, on the other hand, traces a continuous figure in space and in time. How, then, are these realms coordinated?
I ask the question because in similar systems, coordination is crucial. When I use the English language, the rules of grammar act as a constraint on the changes that I might make to the letters or sounds I employ. This is something we take for granted, an ordinary miracle in which I pass from one sentence to the next, almost as if crossing an abyss by means of a series of well-placed stepping stones.
In living creatures, things evidently proceed otherwise. There is no obvious coordination between alphabet and organism; the two objects are governed by different conceptual regimes, and that apparently is the end of it. Under the pressures of competition, the orchid Orphrys apifera undergoes a statistically adapted drift, some incidental feature in its design becoming over time ever more refined, until, consumed with longing, a misguided bee amorously mounts the orchid's very petals, convinced that he has seen shimmering there a female's fragile genitalia. As this is taking place, the marvelous mimetic design maturing slowly, the orchid's underlying alphabetic system undergoes a series of random perturbations, letters in its genetic alphabet winking off or winking on in a way utterly independent of the grand convergent progression toward perfection taking place out there where the action is.
We do not understand, we cannot re-create, a system of this sort. However it may operate in life, randomness in language is the enemy of order, a way of annihilating meaning And not only in language, but in any language-like system -- computer programs, for example. The alien influence of randomness in such systems was first noted by the distinguished French mathematician M.P. Schutzenberger, who also marked the significance of this circumstance for evolutionary theory. "If we try to simulate such a situation," he wrote, "by making changes randomly . . . on computer programs, we find that we have no chance . . . even to see what the modified program would compute; it just jams.3

Planets of Possibility

This is not yet an argument, only an expression of intellectual unease; but the unease tends to build as analogies are amplified. The general issue is one of size and space, and the way in which something small may be found amidst something very big.
Linguists in the 1950's, most notably Noam Chomsky and George Miller, asked dramatically how many grammatical English sentences could be constructed with 100 letters. Approximately 10 to the 25th power, they answered. This is a very large number. But a sentence is one thing; a sequence, another. A sentence obeys the laws of English grammar; a sequence is lawless and comprises any concatenation of those 100 letters. If there are roughly (1025) sentences at hand, the number of sequences 100 letters in length is, by way of contrast, 26 to the 100th power. This is an inconceivably greater number. The space of possibilities has blown up, the explosive process being one of combinatorial inflation.
Now, the vast majority of sequences drawn on a finite alphabet fail to make a statement: they consist of letters arranged to no point or purpose. It is the contrast between sentences and sequences that carries the full, critical weight of memory and intuition. Organized as a writhing ball, the sequences resemble a planet-sized object, one as large as pale Pluto. Landing almost anywhere on that planet, linguists see nothing but nonsense. Meaning resides with the grammatical sequences, but they, those sentences, occupy an area no larger than a dime.
How on earth could the sentences be discovered by chance amid such an infernal and hyperborean immensity of gibberish? They cannot be discovered by chance, and, of course, chance plays no role in their discovery. The linguist or the native English-speaker moves around the place or planet with a perfectly secure sense of where he should go, and what he is apt to see.
The eerie and unexpected presence of an alphabet in every living creature might suggest the possibility of a similar argument in biology. It is DNA of course, that acts as life's primordial text, the code itself organized in nucleic triplets, like messages in Morse code. Each triplet is matched to a particular chemical object, an amino acid. There are twenty such acids in all. They correspond to letters in an alphabet. As the code is read somewhere in life's hidden housing, the linear order of the nucleic acids induces a corresponding linear order in the amino acids. The biological finger writes, and what the cell reads is an ordered presentation of such amino acids-a protein.
Like the nucleic acids, proteins are alphabetic objects, composed of discrete constituents. On average, proteins are roughly 250 amino acid residues in length, so a given protein may be imagined as a long biochemical word, one of many.
The aspects of an analogy are now in place. What is needed is a relevant contrast, something comparable to sentences and sequences in language. Of course nothing completely comparable is at hand: there are no sentences in molecular biology. Nonetheless, there is this fact, helpfully recounted by Richard Dawkins: "The actual animals that have ever lived on earth are a tiny subset of the theoretical animals that could exist." It follows that over the course of four billion years, life has expressed itself by means of a particular stock of proteins, a certain set of life-like words.
A combinatorial count is now possible. The MIT physicist Murray Eden, to whom I owe this argument, estimates the number of the viable proteins at 10 to the 50th power. Within this set is the raw material of everything that has ever lived: the flowering plants and the alien insects and the seagoing turtles and the sad shambling dinosaurs, the great evolutionary successes and the great evolutionary failures as well. These creatures are, quite literally, composed of the proteins that over the course of time have performed some useful function, with "usefulness" now standing for the sense of sentencehood in linguistics.
As in the case of language, what has once lived occupies some corner in the space of a larger array of possibilities, the actual residing in the shadow of the possible. The space of all possible proteins of a fixed length (250 residues, recall) is computed by multiplying 20 by itself 250 times (20 to the 250th power). It is idle to carry out the calculation. The numbers larger by far than seconds in the history of the world since the Big Bang or grains of sand on the shores of every sounding sea. Another planet now looms in the night sky, Pluto-sized or bigger, a conceptual companion to the planet containing every sequence composed by endlessly arranging the 26 English letters into sequences 100 letters in length. This planetary doppelganger is the planet of all possible proteins of fixed length, the planet, in a certain sense, of every conceivable form of carbon-based life.
And there the two planets lie, spinning on their soundless axes. The contrast between sentences and sequences on Pluto reappears on Pluto's double as the contrast between useful protein forms and all the rest; and it reappears in terms of the same dramatic difference in numbers, the enormous (20 to the 25th power) overawing the merely big (10 to the 50th power), the contrast between the two being quite literally between an immense and swollen planet and a dime's worth of area. That dime-sized corner, which on Pluto contains the English sentences, on Pluto's double contains the living creatures; and there the biologist may be seen tramping, the warm puddle of wet life achingly distinct amid the planet's snow and stray proteins. It is here that living creatures, whatever their ultimate fate, breathed and moaned and carried on, life evidently having discovered the small quiet corner of the space of possibilities in which things work.
It would seem that evolution, Murray Eden writes in artfully ambiguous language, "was directed toward the incredibly small proportion of useful protein forms. . . ," the word "directed" conveying, at least to me, the sobering image of a stage-managed search, with evolution bypassing the awful immensity of all that frozen space because in some sense evolution knew where it was going.
And yet, from the perspective of Darwinian theory, it is chance that plays the crucial -- that plays the only role in generating the proteins. Wandering the surface of a planet, evolution wanders blindly, having forgotten where it has been, unsure of where it is going.

The Artificer of Design

Random mutations are the great creative demiurge of evolution, throwing up possibilities and bathing life in the bright light of chance. Each living creature is not only what it is but what it might be. What, then, acts to make the possible palpable?
The theory of evolution is a materialistic theory. Various deities need not apply. Any form of mind is out. Yet a force is needed, something adequate to the manifest complexity of the biological world, and something that in the largest arena of all might substitute for the acts of design, anticipation, and memory that are obvious features of such day-to-day activities as fashioning a sentence or a sonnet.
This need is met in evolutionary theory by natural selection, the filter but not the source of change. "It may be said," Darwin wrote,
that natural selection is daily and hourly scrutinizing, throughout the world, every variation, even the slightest; rejecting that which is bad, preserving and adding up all that is good: silently and insensibly working, whenever and wherever opportunity offers, as the improvement of each organic being in relation to its organic and inorganic conditions of life.
Natural selection emerges from these reflections as a strange force-like concept. It is strange because it is unconnected to any notion of force in physics, and it is force-like because natural selection doessomething, it has an effect and so unctions as a kind of cause.4
Creatures, habits, organ systems, body plans, organs, and tissues are shaped by  natural selection. Population geneticists write of selection forces, selection pressures, and coefficients of natural selection; biologists say that natural selection sculpts, shapes, coordinates, transforms, directs, controls, changes, and transfigures living creatures.
It is natural selection, Richard Dawkins believes, that is the artificer of design, a cunning force that mocks human ingenuity even as it mimics it:
Charles Darwin showed how it is possible for blind physical forces to mimic the effects of conscious design, and, by operating as a cumulative filter of chance variations, to lead eventually to organized and adaptive complexity, to mosquitoes and mammoths, to humans and therefore, indirectly, to books and computers.
In affirming what Darwin showed, these words suggest that Darwin demonstrated the power of natural selection in some formal sense, settling the issue once and for all. But that is simply not true. When Darwin wrote, the mechanism of evolution that he proposed had only life itself to commend it. But to refer to the power of natural selection by appealing to the course of evolution is a little like confirming a story in the New York Times by reading it twice. The theory of evolution is, after all, a general theory of change; if natural selection can sift the debris of chance to fashion an elephant's trunk, should it not be able to work elsewhere- amid computer programs and algorithms, words and sentences? Skeptics require a demonstration of natural selection's cunning, one that does not involve the very phenomenon it is meant to explain.
No sooner said than done. An extensive literature is now devoted to what is optimistically called artificial life. These are schemes in which a variety of programs generate amusing computer objects and by a process said to be similar to evolution show that they are capable of growth and decay and even a phosphorescent simulacrum of death. An algorithm called "Face Prints," for example, has been designed to enable crime victims to identify their attackers. The algorithm runs through hundreds of facial combinations (long hair, short hair, big nose, wide chin, moles, warts, wens, wrinkles) until the indignant victim spots the resemblance between the long-haired, big-nosed, widechinned portrait of the perpetrator and the perpetrator himself.
It is the presence of the human victim in this scenario that should give pause. What is be doing there, complaining loudly amid those otherwise blind forces? A mechanism that requires a discerning human agent cannot be Darwinian. The Darwinian mechanism neither anticipates nor remembers. It gives no directions and makes no choices. What is unacceptable in evolutionary theory, what is strictly forbidden, is the appearance of a force with the power to survey time, a force that conserves a point or a property because it will be useful. Such a force is no longer Darwinian. How would a blind force know such a thing? And by what means could future usefulness be transmitted to the present?
If life is, as evolutionary biologists so often say, a matter merely of blind thrusting and throbbing, any definition of natural selection must plainly meet what I have elsewhere called a rule against deferred success.5
It is a rule that cannot be violated with impunity; if evolutionary theory is to retain its intellectual integrity, it cannot be violated at all.
But the rule is widely violated, the violations so frequent as to amount to a formal fallacy.

Advent of the Head Monkey

It is Richard Dawkins's grand intention in The Blind Watchmaker to demonstrate, as one reviewer enthusiastically remarked, "how natural selection allows biologists to dispense with such notions as purpose and design." This he does by exhibiting a process in which the random exploration of certain possibilities, a blind stab here, another there, is followed by the filtering effects of natural selection, some of those stabs saved, others discarded. But could a process so conceived -- a Darwinian process -- discover a simple English sentence: a target, say, chosen from Shakespeare? The question is by no means academic. If natural selection cannot discern a simple English sentence, what chance is there that it might have discovered the mammalian eye or the system by which glucose is regulated by the liver? A thought experiment in The Blind Watchmaker now follows. Randomness in the experiment is conveyed by the metaphor of the monkeys, perennial favorites in the theory of probability. There they sit, simian hands curved over the keyboards of a thousand typewriters, their long agile fingers striking keys at random. It is an image of some poignancy, those otherwise intelligent apes banging away at a machine they cannot fathom; and what makes the poignancy pointed is the fact that the system of rewards by which the apes have been induced to strike the typewriter's keys is from the first rigged against them.
The probability that a monkey will strike a given letter is one in 26. The typewriter has 26 keys: the monkey, one working finger. But a letter is not a word. Should Dawkins demand that the monkey get two English letters right, the odds against success rise with terrible inexorability from one in 26 to one in 676. The Shakespearean target chosen by Dawkins -- "Methinks it is like a weasel"-is a six-word sentence containing 28 English letters (including the spaces). It occupies an isolated point in a space of 10,000 million, million, million, million, million, million possibilities. This is a very large number; combinatorial inflation is at work. And these are very long odds. And a six-word sentence consisting of 28 English letters is a very short, very simple English sentence.
Such are the fatal facts. The problem confronting the monkeys is, of course, a double one: they must, to be sure, find the right letters, but they cannot lose the right letters once they have found them. A random search in a space of this size is an exercise in irrelevance. This is something the monkeys appear to know. What more, then, is expected; what more required? Cumulative selection, Dawkins argues- the answer offered as well by Stephen Jay Gould, Manfred Eigen, and Daniel Dennett. The experiment now proceeds in stages. The monkeys type randomly. After a time, they are allowed to survey what they have typed in order to choose the result "which however slightly most resembles the target phrase." It is a computer that in Dawkins's experiment performs the crucial assessments, but I prefer to imagine its role assigned to a scrutinizing monkey-the Head Monkey of the experiment. The process under way is one in which stray successes are spotted and then saved. This process is iterated and iterated again. Variations close to the target are conserved because they are close to the target, the Head Monkey equably surveying the scene until, with the appearance of a miracle in progress, randomly derived sentences do begin to converge on the target sentence itself.
The contrast between schemes and scenarios is striking. Acting on their own, the monkeys are adrift in fathomless possibilities, any accidental success-a pair of English-like letters-lost at once, those successes seeming like faint untraceable lights flickering over a wine-dark sea. The advent of the Head Monkey changes things entirely. Successes are conserved and then conserved again. The light that formerly flickered uncertainly now stays lit, a beacon burning steadily, a point of illumination. By the light of that light, other lights are lit, until the isolated successes converge, bringing order out of nothingness.
The entire exercise is, however, an achievement in self-deception. A target phrase? Iterations that most resemble the target? A Head Monkey that measures the distance between failure and success? If things are sightless, how is the target represented, and how is the distance between randomly generated phrases and the targets assessed? And by whom? And the Head Monkey? What of him? The mechanism of deliberate design, purged by Darwinian theory on the level of the organism, has reappeared in the description of natural selection itself, a vivid example of what Freud meant by the return of the repressed.
This is a point that Dawkins accepts without quite acknowledging, rather like a man adroitly separating his doctor's diagnosis from his own disease.6
Nature presents life with no targets. Life shambles forward, surging here, shuffling there, the small advantages accumulating on their own until something novel appears on the broad evolutionary screen-an arch or an eye, an intricate pattern of behavior, the complexity characteristic of life. May we, then, see this process at work, by seeing it simulated?
"Unfortunately," Dawkins writes, "I think it may be beyond my powers as a programmer to set up such a counterfeit world."7
This is the authentic voice of contemporary Darwinian theory. What may be illustrated by the theory does not involve a Darwinian mechanism; what involves a Darwinian mechanism cannot be illustrated by the theory.

Darwin Without Darwinism

Biologists oftenaffirm that as members of the scientific community they positively welcome criticism. Nonsense. Like everyone else, biologists loathe criticism and arrange their lives so as to avoid it. Criticism has nonetheless seeped into their souls, the process of doubt a curiously Darwinian one in which individual biologists entertain minor reservations about their theory without ever recognizing the degree to which these doubts mount up to a substantial deficit. Creationism, so often the target of their indignation, is the least of their worries.
For many years, biologists have succeeded in keeping skepticism on the circumference of evolutionary thought, where paleontologists, taxonomists, and philosophers linger. But the burning fringe of criticism is now contracting, coming ever closer to the heart of Darwin's doctrine. In a paper of historic importance, Stephen Jay Gould and Richard Lewontin expressed their dissatisfaction with what they termed "just-so" stories in biology.8
It is by means of a just-so story, for example, that the pop biologist Elaine Morgan explains the presence in human beings of an aquatic diving reflex. An obscure primate ancestral to man, Morgan argues, was actually aquatic, having returned to the sea like the dolphin. Some time later, that primate, having tired of the water, clambered back to land, his aquatic adaptations intact. Just so.
If stories of this sort are intellectually inadequate -- preposterous, in fact -- some biologists are prepared to argue that they are unnecessary as well, another matter entirely. "How seriously," H. Allen Orr asked in a superb if savage review of Dennett's Darwin's Dangerous Idea, should we take these endless adaptive explanations of features whose alleged Design may be illusory? Isn't there a difference between those cases where we recognize Design before we understand its precise significance and those cases where we try to make Design manifest concocting a story? And isn't it especially worrisome that we can make up arbitrary traits faster than adaptive stories, and adaptive stories faster than experimental tests?
The camel's lowly hump and the elephant's nose -- these, Orr suggests, may well be adaptive and so designed by natural selection. But beyond the old familiar cases, life may not be designed at all, the weight of evolution borne by neutral mutations, with genes undergoing a slow but pointless drifting in time's soft currents.
Like Orr, many biologists see an acknowledgment of their doubts as a cagey, a calculated, concession; but cagey or not, it is a concession devastating to the larger project of Darwinian biology. Unable to say what evolution has accomplished, biologists now find themselves unable to say whether evolution has accomplished it. This leaves evolutionary theory in the doubly damned position of having compromised the concepts needed to make sense of life -- complexity, adaptation, design - while simultaneously conceding that the theory does little to explain them.
No doubt, the theory of evolution will continue to play the singular role in the life of our secular culture that it has always played. The theory is unique among scientific instruments in being cherished not for what it contains, but for what it lacks. There are in Darwin's scheme no biotic laws, no Bauplan as in German natural philosophy, no special creation, no elan vital, no divine guidance or transcendental forces. The theory functions simply as a description of matter in one of its modes, and living creatures are said to be something that the gods of law indifferently sanction and allow.
"Darwin," Richard Dawkins has remarked with evident gratitude, "made it possible to be an intellectually fulfilled atheist." This is an exaggeration, of course, but one containing a portion of the truth. That Darwin's theory of evolution and biblical accounts of creation play similar roles in the human economy of belief is an irony appreciated by altogether too few biologists.

On the Derivation of Ulysses from Don Quixote

I imagine this story being told to me by Jorge Luis Borges one evening in a Buenos Aires cafe.
His voice dry and infinitely ironic, the aging, nearly blind literary master observes that "the Ulysses," mistakenly attributed to the Irishman James Joyce, is in fact derived from "the Quixote."
I raise my eyebrows.
Borges pauses to sip discreetly at the bitter coffee our waiter has placed in front of him, guiding his hands to the saucer.
"The details of the remarkable series of events in question may be found at the University of Leiden," he says. "They were conveyed to me by the Freemason Alejandro Ferri in Montevideo."
Borges wipes his thin lips with a linen handkerchief that he has withdrawn from his breast pocket.
"As you know," he continues, "the original handwritten text of the Quixote was given to an order of French Cistercians in the autumn of 1576."
I hold up my hand to signify to our waiter that no further service is needed.
"Curiously enough, for none of the brothers could read Spanish, the Order was charged by the Papal Nuncio, Hoyo dos Monterrey (a man of great refinement and implacable will), with the responsibility for copying the Quixote, the printing press having then gained no currency in the wilderness of what is now known as the department of Auvergne. Unable to speak or read Spanish, a language they not unreasonably detested, the brothers copied the Quixote over and over again, re-creating the text but, of course, compromising it as well, and so inadvertently discovering the true nature of authorship. Thus they created Fernando Lor's Los Hombres d'Estado in 1585 by means of a singular series of copying errors, and then in 1654 Juan Luis Samorza's remarkable epistolary novel Por Favor by the same means, and then in 1685, the errors having accumulated sufficiently to change Spanish into French, Moliere's Le Bourgeois Gentilhomme, their copying continuous and indefatigable, the work handed down from generation to generation as a sacred but secret trust, so that in time the brothers of the monastery, known only to members of the Bourbon house and, rumor has it, the Englishman and psychic Conan Doyle, copied into creation Stendhal's The Red and the Black and Flaubert's Madame Bovary, and then as a result of a particularly significant series of errors, in which French changed into Russian, Tolstoy's The Death of Ivan Ilyich and Anna Karenina. Late in the last decade of the 19th century there suddenly emerged, in English, Oscar Wilde's The Importance of Being Earnest, and then the brothers, their numbers reduced by an infectious disease of mysterious origin, finally copied the Ulysses into creation in 1902, the manuscript lying neglected for almost thirteen years and then mysteriously making its way to Paris in 1915, just months before the British attack on the Somme, a circumstance whose significance remains to be determined."
I sit there, amazed at what Borges has recounted. "Is it your understanding, then," I ask, "that every novel in the West was created in this way?"
"Of course," replies Borges imperturbably. Then he adds: "Although every novel is derived directly from another novel, there is really only one novel, the Quixote."

Endnotes

  1. A.S. Romer's Vertebrate Paleontology (University of Chicago Press, third edition, 1966) may be consulted with profit.
  2. The details have been reported in the New York Times and in Science: evidence that at least some entomologists have a good deal of time on their hands.
  3. Schutzenberger's comments were made at a symposium held in 1966. The proceedings were edited by Paul S. Moorhead and Martin Kaplan and published as Mathematical Challenges to the Neo-Darwinian Interpretation of Evolution (Wistar Institute Press,1967). Schutzenberger's remarks, together with those of the physicist Murray Eden at the same symposium, constituted the first significant criticism of evolutionary doctrine in recent decades.
  4. Murray Eden is, as usual, perceptive: "It is as if," he writes some pre-Newtonian cosmologist had proposed a theory of planetary motion which supposed that a natural force of unknown origin held the planets in their courses. The supposition is right enough and the idea of a force between two celestial bodies is a very useful one, but it is hardly a theory."
  5. Black Mischief: Language, Life, Logic & Luck (1986).
  6. The same pattern of intellectual displacement is especially vivid in Daniel Dennett's description of natural selection as a force subordinate to what he calls "the principle of the accumulation of design." Sifting through the debris of chance, natural selection, he writes, occupies itself by "thriftily conserving the design work . . . accomplished at each stage." But there is no such principle. Dennett has simply assumed that a sequence of conserved advantages will converge to an improvement in design; the assumption expresses a non sequitur.
  7. It is absurdly easy to set up a sentence-searching algorithm obeying purely Darwinian constraints. The result, however, is always the same -- gibberish.
  8. "The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme," Proceedings of the Royal Society. Volume B 205 (1979).
David Berlinski, who has taught mathematics and philosophy in American and French universities, is the author, most recently, of A Tour of the Calculus (Pantheon) and of The Body Shop, a novel forthcoming from St. Martin's). His article, "The Soul of Man Under Physics," appeared in our January issue.