Search This Blog

Thursday 7 March 2019

On the periodic table's case for design.

Rare Earth Elements and Intelligent Design
Evolution News @DiscoveryCSC

Can we explain human technology merely by supernova explosions and blind chance? Some do. But in rare earth elements, we find hints of a better explanation.  Science Magazine posted a look at the so-called “rare earth elements” of the periodic table. Consider some design implications of these elements. Introducing the rare earth elements (REEs), Thibault Cheisson and Eric J. Schelter call them “Mendeleev’s bane, modern marvels.”

The archaeological three-age system (Stone, Bronze, and Iron) organizes the history of humankind according to the central role of metals in technological evolution. From antiquity to the modern day, the exploitation of metals has required technologies for their mass extraction and purification, creating strategic importance for mineral deposits and metallurgical knowledge. Unlike other resources, metals are relatively amenable to recycling and to the creation of circular supply chains. This scenario is evident in historical developments for Fe, Cu, Al, Ti, Zn, Ni, and Sn with recycling rates representing between 15 and 70% of the current usage for those metals in the United States and the European Union. However, in recent decades, new technologies have emerged that rely on metals of previously limited use: lithium, cobalt, and the rare earth (RE) elements, among others. Rare earths are finding increasing use in communications — and display devices, renewable energy, medicine, and other practical applications that affect daily life. In this Review, we examine the past and present separation methods that have developed REs into an industrial sector, with a focus on recent advances.

Rare Earths and Chemistry

As Evolution News touched on in January, Dmitri Mendeleev was the key player in describing a natural pattern among the elements that led to the modern periodic table. In his day, only six of the rare earth elements were known. His belief in an orderly universe led him to predict in 1869 that elements in the gaps would be found — as indeed they were  — where he only had question marks. Cheisson and Schelter call these REEs “Mendeleev’s bane” because they frustrated his scheme.
  To accommodate some of these troublesome elements, Mendeleev himself examined and confirmed their trivalent natures in oxides (RE2O3), materials that were initially assumed to be divalent. In the latter iteration of his Natural System of the Elements, Mendeleev tried to accommodate the known REs in analogy to the d-block metals, but this placement led to inconsistencies. Ultimately, Mendeleev never successfully set the REs in his periodic system, a frustration that may have contributed to his shift in research interest away from the periodic table after 1871. Without easily discernable periodic trends, and owing to the limited characterization techniques of the time, close to 100 erroneous new RE claims were made during the last part of the 19th century. By 1907, all REs had finally been isolated….
   In spite of these challenges, Mendeleev stuck to his conviction that order would persist. 1907 was the year of Mendeleev’s death, so he had been partly vindicated by the time the REEs were found. Some of the REEs were fit into an “f-block” in the periodic table, consisting of two expanded rows called the lanthanide series (elements 58 to 71) and the actinide series (elements 90 to 103). This maintained the periodicity of the bottom two rows of the table by adding 14 elements between lanthanum-57 and hafnium-72, and 14 elements between actinium-89 and rutherfordium-104 (elements above 94 being artificially created in the atomic age). Specifically, “The REs are a family of 17 metallic elements formed by the group III (Sc, Y) and the lanthanide series (La–Lu).”

Considered to be metallic, they are called “rare earths” not because they are all geologically scarce, but because they are hard to isolate. “Chemically, REs demonstrate very similar properties with the prevalence of the +3 oxidation state under ambient conditions, a large electropositivity, and kinetic lability,” the article explains. These factors made them a bane to poor Mendeleev in the 19th century, but we know much more about them now, after years of perfecting techniques to isolate them. Their difficult identification provides a first take-home on rare earths: they were predicted, and eventually discovered, because of a man who believed in an orderly system of chemistry.


Rare Earths and Biology

Life uses comparatively few of the 103 natural elements. Most of them are abundant on the earth. The big four are carbon, hydrogen, oxygen, nitrogen. Next in line, according to David Nguyen at Sciencing, are seven other major elements, phosphorus, sulfur, sodium, chlorine, potassium, calcium, and magnesium, making up about 3.5 percent of our bodies. The last 0.5 percent consists of the 13 trace elements, iron, iodine, manganese, molybdenum, selenium, silicon, tin, vanadium, boron, chromium, cobalt, copper, and fluorine. Despite their minor appearance by volume, “living things would not be able to survive without trace elements,” Nguyen says. So far, that’s 24 of the 94 naturally occurring chemical elements to be essential for the human body.


Tin, by the way? Really? It is found in our tissues, but there is no evidence it has any essential biological function at this time, says the Agency for Toxic Substances and Disease Registry. Search the Internet for Search the Internet for the body’s need for trace amounts of cobalt, chromium, silicon, and vanadium. It’s quite fascinating. Silicon, for instance, is used in our balance organs, and cobalt is used to absorb and process vitamin B12 and repair myelin around nerve cells.

In any event, one cannot always discount an element’s importance by its absence in the body. Not that long ago, scientists identified bromine as a vital element. It doesn’t abide in the body, but takes part in essential processes during the construction of collagen. “Without bromine, there are no animals,” concluded scientists at Vanderbilt University in 2014. They call it the 28th essential element.

Do We Need Them?

his brings us to REEs and biology. Do we need them? Do we rely on them? Cheisson and Schelter spend most of their article discussing the historical progress of isolating REEs. But then, they describe a new, young field of research looking into this question:
      Rare earths are used extensively in medicine, especially as imaging agents. But until recently, they were believed to have no natural, biological importance. Surprisingly, Jetten, Op den Camp, Pol, and co-workers reported in 2014 an essential dependence of methanotrophic bacterium on LREs [“light” rare earths, belonging to the Cerium group]. They rationalized this requirement by the replacement of the generally encountered Ca2+ cation by a LRE3+ cation in the active site of the methanol dehydrogenase (MDH) enzyme (61, 62) (Fig. 3A). Following that discovery, RE-dependent bacteria have been found in many environments and have initiated a new field of research.
      t’s too early to say if humans need rare earths, but now that bacteria — the supposedly most primitive life forms on earth — depend on some of them, the possibility exists that REEs will prove to be vital to all life on earth, perhaps in indirect ways. “Without doubt, these confounding elements will continue to provide surprises and opportunities for the progress of humankind,” the authors say.

Rare Earths and Applied Science

It’s only recently that rare earths have become vital to modern engineering. Now, they are eagerly sought elements for computers, cell phones, “communications — and display devices, renewable energy, medicine, and other practical applications that affect daily life.” Ions of yttrium and lutetium, for instance, have become useful for identifying and treating cancer. We rely on REEs when we use cell phones and computers and TV sets. While it is true that humans got along fine without REEs during the Stone Age, Bronze Age, and Iron Age, how much richer our lives have become recently because of the availability of these elements.

Rare Earths and Geology

Essential elements cannot just be part of a planet’s makeup. They have to be accessible at the surface. Astronomers say that all the elements heavier than iron-26 had to come from supernovae. What are the chances that sufficient quantities of heavier elements, including the cobalt, copper, zinc, bromine, and molybdenum in our bodies, and potentially the REEs that give humans technological opportunities, would have arrived at the sun or earth from a nearby supernova? What are the chances that they would percolate up to the crust from a molten planet during its formation? These sound look good questions for design scientists.

Rare Earths and Cosmology

The same questions apply to other stars and planets. Astrobiology is big these days: NASA tries to look for life beyond the earth. They look for habitable zones around other stars, and get excited when earth-size planets appear to orbit a star at a radius that allows the existence of liquid water. They try to identify biomarkers such as methane or oxygen in an exoplanet’s atmosphere. Many astrobiologists feel it is sufficient to “follow the water,” even speculating that life might exist in subsurface oceans of moons in the outer solar system, like Europa at Jupiter and Enceladus at Saturn. Water is remarkably well-suited for life, as Michael Denton has written in his book, The Wonder of Water.We know, however, that earth life needs far more than H and O. What about the other 26 essential elements? And what about those rare earths? Even though they are apparently not essential for life, did an intelligent creator supply those on the surface of our planet with the foreknowledge that designed beings would someday make good use of them?

Rare Earths and Rare Earth

In 2000, Ward and Brownlee published a controversial book, Rare Earth: Why Complex Life Is Uncommon in the Universe. At a time when most scientists assumed there must be millions of complex civilizations in the Milky Way alone, the authors rained on their parade, arguing that the requirements for complex life are so stringent, living worlds like ours could be rare exceptions — perhaps unique. 

This brief look into rare earth elements may provide additional support for their rare earth hypothesis. The more stringent the requirements, the better the evidence for design. REEs offer a new generation of chemists, biologists, geologists, physicists, engineers, astronomers, cosmologists, and philosophers opportunities to investigate profound questions about these elements. Why are they here? Where did they come from? Is the naturalistic answer plausible? Do they serve a purpose? The answers could inspire additional chapters to The Privileged Planet.

In the beginning...

Confirming the Big Bang: The Early Decades
Guillermo Gonzalez

Cosmologists have come a long way since Edwin Hubble published that ratty looking plot of galaxy recession velocities versus distance. Hubble wasn’t the first to discover what we now call Hubble’s law, but the name stuck. Extragalactic distance measurements have improved greatly since then. Cosmologists have measured more galaxies, at much greater distances and with greater accuracy and precision. 
  Of the four forces, only the gravitational force is important for determining motions of matter at large scales. By the 1920s Einstein’s general theory of relativity (GR) had displaced Newton’s theory of gravity. Any theory attempting to describe the dynamics and history of the universe must ultimately depend on GR.
    
Alternative Proposals

To be sure, there were and continue to be alternative proposals to explain the observations. One early theory was calledtired light.”  It was first proposed by Fritz Zwicky in 1929. In this theory, light becomes more redshifted the farther it travels through the intergalactic medium. More on this proposal below.

The Big Bang theory developed from Georges LemaĆ®tre’s earlier “primeval atom” or “Cosmic Egg” hypothesis. The Big Bang theory simply says the universe was much smaller, denser, and hotter compared to the present. It has expanded over its history, causing matter on large scales to spread out. On small scales, gravity caused matter to clump together.

Originally, the Big Bang theory was built on the theoretical foundation of GR and the empirical foundation of Hubble’s law. GR has faired extremely well over the past century. It has passed many stringent observational and experimental tests, including, in 2015, the first direct detection of gravitational waves.
  Alexander Friedmann, and later independently Georges LemaĆ®tre, Howard Robertson, and Arthur Walker, derived the cosmological solution to the GR field equations describing an isotropic and homogeneous dynamic universe. Not only did these equations form the foundation of the Big Bang theory, they also equally supported its main competitor, Steady State. The Steady State theory was proposed by Fred Hoyle, Thomas Gold, and Hermann Bondi in 1948 to do away with the need for a beginning, which the Big Bang theory implied.

Predictions and “Postdictions”

Each cosmological theory makes different predictions, but they “postdict” already available data. Prior to the 1960s, the Big Bang and Steady State models explained the Hubble law within their respective frameworks, and they were both consistent with everything else we could observe in the universe. Continued advancements in observational cosmology, however, soon provided ways of testing them. The first important test came in 1964 with the discovery of the cosmic microwave background (CMB) radiation. Arno Penzias and Robert Wilson of Bell Labs measured the temperature associated with the radiation to be 3.5 +/- 1 degrees K. For an interesting historical overview of the early “near misses” of the discovery of the CMB radiation, see here. The modern value is 2.7 degrees K.

Caught with Its Pants Down

This was an important discovery for several reasons. First, the Big Bang theory required the CMB radiation, while Steady State was silent about it. Steady State was caught with its pants down; its proponents tried to explain the CMB radiation after the fact. 

Second, in 1948 Ralph Alpher and Robert Herman actually predicted the temperature associated with the CMB to be 5 degrees K (see here for a detailed history of predictions of the CMB radiation temperature written by Alpher’s son). George Gamow predicted a value of 7 degrees K in 1953 and 50 degrees K in 1961. It is important to note that the predicted values of the CMB radiation temperature depend on knowing such quantities as the value of the Hubble constant and the age of the universe. Neither of these was known very accurately at the time. For example, correcting Gamow’s 1961 temperature estimate for his too-small value for the age of the universe reduces it by a factor of two (see here). Third, the CMB radiation was measured to be uniform in all directions, or isotropic, which also confirms its cosmic status. 

The Temperature of Space

However, prior to 1964, Big Bang proponents were not the only ones talking about the “temperature of space.” For example, in 1926 Arthur Eddington calculated a temperature of space due to the energy density of the radiation from stars around the Sun to be about 3.2 degrees K. As  explained here, this is just the local radiation field and not the CMB radiation that fills all of space. In addition, this radiation is most intense in the visible region of the spectrum and is far weaker in the radio, where the expected CMB radiation peaks. Eddington never gave his estimate any cosmological significance. The close agreement with the CMB radiation temperature is a coincidence due to our particular location in the Milky Way galaxy.

Others did make explicit predictions of the CMB temperature within the context of a nonexpanding universe. They included a who’s who of scientists: Walther Nernst, Louis de Broglie, and Max Born. They worked within the framework of various tired light models. Unlike the Big Bang and Steady State theories, tired light models were proposed as alternatives to GR to explain the redshifts. Although the “space temperatures” calculated for these models are close to the measured value of the CMB temperature (see here) they never gained much following because they failed to provide a plausible physical mechanism for the light to become tired (see here and here). What’s more, the success of GR over the course of the 20th century chipped away at theories based on alternatives.

Was this the only Big Bang prediction? Not by a long shot! In another post I will discuss the many additional observational tests of the Big Bang theory in the years following Penzias and Wilson’s important discovery.

The design debate devolves?

Listen: Behe, McDiarmid Continue a Discussion of the Lents Review
David Klinghoffer | @d_klinghoffer

On a new episode of ID the Future, host Andrew McDiarmid continues his conversation with biochemist Michael Behe about the response to Behe’s just released book, Darwin Devolves. Their focus is the review in Science by lead author Nathan Lents, with Joshua Swamidass and Richard Lenski.


Mike and Andrew have a good time considering the range of ways in which the preemptive, prepublication review fell short. Download the podcast or listen to it here.As I’ve noted, the extensive discussion of the review, by Behe himself and others at Evolution News, is simply due to the fact that Science is such a major and respected venue. It is the New York Times of the science community here in the United States. On ID the Future, Behe has some further, sharp words for the Lents document. I will add that after Professor Lents lashed out rather wildly this week, writing at the website Peaceful Science, I agreed with Joshua Swamidass, who administers the site, that it was time to cool things off a bit.

In that spirit, I offer no commentary other than to say, it’s very much worth your time to listen to this podcast, the second in a series. (See  here  for the first part.) Behe summarizes well where the review goes wrong, and what that indicates about the future of the evolution debate.

Sunday 3 March 2019

Some newborns are less equal than others?

Darkness Rising: As It Turns Out, Not All Newborns Have a Right to Life
Michael Egnor

If you had any doubt that darkness is overtaking our culture, this should remove it. Last week Nebraska Senator Ben Sasse introduced the Born-Alive Abortion Survivors Protection Act, intended to protect babies who are born during the process of abortion. The bill required physicians to provide babies who survive abortion with the same medical care that would be provided to any newborn. Forty-four senators voted against the bill, which precluded it from being considered for legislation because 60 votes were needed to override the anticipated filibuster. 

An Anti-Infanticide Bill

Sasse’s bill was essentially an anti-infanticide bill. The 44 senators who voted to oppose the bill voted to deny life to children who are born despite the fact that their mothers don’t want them. “You paid for a dead baby, you deserve a dead baby” is the most succinct justification for their opposition to the bill. 

Opponents of the bill argued that it amounts to interference in the medical relationship between a woman and her doctor. Nonsense. Once the baby is alive outside the womb — whether by ordinary childbirth or by a botched abortion — he or she is a newborn, not a “product of conception.” Sasse’s bill merely requires that all newborns — all live babies — receive competent medical care, regardless of the circumstances immediately preceding their birth. 

Two Classes of Newborns

Opponents argue — implicitly, though of course not explicitly — that there are two different classes of newborns: the wanted and the unwanted. They argue that only the wanted deserve medical care. The unwanted have no right to life. 

Opposition to this bill by even one senator would be a sign of moral rot; in a healthy culture, no legislator would dare endorse infanticide. Endorsement of infanticide by nearly half of the Senate is astonishing. 

The culture of death — the dehumanization of the vulnerable and the unwanted — is fast upon us. The rapidity of its advance is hard to believe, even for a cynic like me. If the widespread opposition to Senator Sasse’s simple bill that protects all newborns — wanted and unwanted — doesn’t horrify you, you’re not paying attention. 

Friday 1 March 2019

Toward a theory devolution? IV

Listen: Behe, McDiarmid Continue a Discussion of the Lents Review
David Klinghoffer | @d_klinghoffer

On a new episode of ID the Future, host Andrew McDiarmid continues his conversation with biochemist Michael Behe about the response to Behe’s just released book, Darwin Devolves. Their focus is the review in Science by lead author Nathan Lents, with Joshua Swamidass and Richard Lenski.


Mike and Andrew have a good time considering the range of ways in which the preemptive, prepublication review fell short. Download the podcast or listen to it here.

As I’ve noted, the  extensive discussion of the review, by Behe himself and others at Evolution News, is simply due to the fact that Science is such a major and respected venue. It is the New York Times of the science community here in the United States. On ID the Future, Behe has some further, sharp words for the Lents document. I will add that after Professor Lents lashed out rather wildly this week, writing at the website Peaceful Science, I agreed with Joshua Swamidass, who administers the site, that it was time to cool things off a bit.

In that spirit, I offer no commentary other than to say, it’s very much worth your time to listen to this podcast, the second in a series. (See here for the first part.) Behe summarizes well where the review goes wrong, and what that indicates about the future of the evolution debate.

Long dead,human exceptionalism is gradually being buried unlamented.

Peter Singer Thinks Intellectually Disabled Less Valuable than Pigs

Wesley J. Smith

In his apologetics for infanticide, Princeton bioethicist Peter Singer has used a baby with Down syndrome as an example of a killable infant based on utilitarian measurements. (He actually supports infanticide because babies -- whether disabled or not -- are, in his view, not "persons.")

To Singer, moral value primarily comes from intellectual capacities, and that means developmentally and cognitively disabled human beings (also, the unborn and infants) have less value than other human beings, and indeed, a lower worth than some animals.

Were society ever to adopt Singer's bigoted anti-human exceptionalism views, it would mark the end of universal human rights, opening the door to tyrannical campaigns against the most weak and vulnerable -- you know, the kind of people that the Singers of the world deem resource wasters.

It would also break the spine of unconditional love, as our children would have to earn their place by possessing requisite capacities.

Consider the recent statements by Singer, published in the Journal of Practical Ethics, in which he explains why he would adopt out a child with Down syndrome. He then expresses a profound bigotry against people with cognitive and developmental disabilities (emphasis added):

For me, the knowledge that my [hypothetical Down] child would not be likely to develop into a person whom I could treat as an equal, in every sense of the word, who would never be able to have children of his or her own, who I could not expect to grow up to be a fully independent adult, and with whom I could expect to have conversations about only a limited range of topics would greatly reduce my joy in raising my child and watching him or her develop.

"Disability" is a very broad term, and I would not say that, in general, "a life with disability" is of less value than one without disability. Much will depend on the nature of the disability.

But let's turn the question around, and ask why someone would deny that the life of a profoundly intellectually disabled human being is of less value than the life of a normal human being. Most people think that the life of a dog or a pig is of less value than the life of a normal human being.

On what basis, then, could they hold that the life of a profoundly intellectually disabled human being with intellectual capacities inferior to those of a dog or a pig is of equal value to the life of a normal human being? This sounds like speciesism to me, and as I said earlier, I have yet to see a plausible defence of speciesism. After looking for more than forty years, I doubt that there is one.

Invidious discrimination exists when equals -- e.g., all human beings -- are denigrated as unequal based on some category that the bigot believes reduces the status of the discriminated against human, e.g., racism, sexism, and Singer-style discrimination against people with cognitive or developmental disabilities.

But human beings and animals do not inhabit the same moral realm. It is not wrong or discrimination to view and treat us differently than we do them.

Moreover, the very concept of "speciesism" -- used liberally in animal rights activism and bioethics -- is inherently and invidiously anti-human because it reduces us to so many carbon molecules with no inherent value beyond our cognitive capabilities at the moment of measurement. To repeat myself, the idea of speciesism, like utilitarianism, makes universal human rights impossible to sustain intellectually.

Assuming such utilitarian values would destroy the principles of Western civilization. And never mind the real capacities of many people with Down, whom Singer mischaracterizes, or their extraordinary loving natures -- which I have yet to see Singer opine much about. To Singer, intellect trumps all.

That's bigotry any way you look at it, no different from racism, except that his victims are less able to defend themselves.

I have always found it odd that Singer faces little of the opprobrium society metes out to other bigots. Indeed, he was brought to Princeton from Australia and given one of the world's most prestigious chairs in bioethics precisely because of these attitudes.

Despite supporting the propriety of killing babies, I have no doubt that Singer will continue to be the New York Times' favorite philosopher.

Yet more parody defying absurdity From OOL science.

Here We Go Again: For Complex Life, Just Add Fertilizer
Evolution News & Views

It's such an easy point. A child can grasp it. You may have all the ingredients you want, in the right quantities, but without a builder, nothing functionally complex will emerge. Here, we'll bring you tons of lumber, nails, and pipe. Need wire? Have all you want. Anything else? Just ask, and we'll throw it in at no extra charge: screws, paint, glass. Why, we will even lay a bunch of tools on the ground beside the pile.

Now, let it sit there, exposed to the sun and rain for as long as you like. Billions of years even. How many expect a house or a skyscraper to emerge by natural causes alone?

Evolutionists seem strangely immune to the obviousness of the logic here. They want to explain life's origin and complexity by reference to the availability of building blocks alone. Remember those who tried to account for the  Cambrian explosion by the rise of oxygen? And  origin of life by "a pinch of thickener" in a jumble of common molecules? Look, we can make it much, much easier for evolution. We will even arrange all the atoms into amino acids, sugars, fats and complex organic compounds and dump them into the oceans. Have some polycyclic aromatic hydrocarbons, citric acid, purines and pyrimidines, all brought special delivery by comets and asteroids. Plop! Into the primordial soup they go. Here, have some energy! Have all the UV light, lightning, and volcanoes you want.

The only rule is: no chemists, no mind, and no intelligence.

In  Illustra's film Origin, Discovery Institute biologist Ann Gauger has a pithy way of explaining the hopelessness of natural processes acting on building blocks. "If I put amino acids in a test tube in my lab, even if I added heat and shook it up real well, and kept doing that for a hundred years, or a thousand years, or ten thousand years, or a million years, nothing would happen."

Evolutionists must play by the rules they agreed to. Discovery Institute's Paul Nelson explains the rules in the film:

When you come to the origin of life, the rules -- and this isn't the science itself, this is the underlying philosophy -- the rules say, to solve the problem, you can use matter and energy, and natural law, natural regularities and chance processes, but that exhausts your toolkit. What you're not allowed to use, fundamentally by the rules, so-called rules of science, is mind or intelligence. If you had to attach a name to this position, you can't do better than scientific materialism: a philosophy that tells you "the only acceptable explanation has to be rendered in terms of matter and energy." And if you can't solve the problem using those tools, you're not allowed to change the rules. So from that perspective, how did life come to be via matter and energy alone? Now: try to solve the problem. [Emphasis added.]
To go from microbes to animals presents the same problem, because the same rules apply. Put building blocks into the hand of natural selection, add energy, and once again, nothing will happen. Natural selection is natural, not intelligent. It is matter and energy in motion. It has no foresight. It has no direction. It has no goal. Mindless entities do not compete. They do not try to outdo each other in the struggle for life. Without a mind or plan, natural selection cannot select. In a real sense, natural selection is a restatement of, "Whatever will be, will be." If everything goes extinct in the next meteor strike, so be it. Nobody cares in Darwin's world.

Yet paper after paper appears that fudges on the established rules. A recent example is found in Nature, where Reinhard et al. try to account for the rise of complex life by linking it to the rise of available phosphorus after billions of years. The news from Georgia Tech reads like a myth:

For three billion years or more, the evolution of the first animal life on Earth was ready to happen, practically waiting in the wings. But the breathable oxygen it likely required wasn't there, and a lack of simple nutrients may have been to blame.
Then came a fierce planetary metamorphosis. Roughly 800 million years ago, in the late Proterozoic Eon, phosphorus, a chemical element essential to all life, began to accumulate in shallow ocean zones near coastlines widely considered to be the birthplace of animals and other complex organisms, according to a new study by geoscientists from the Georgia Institute of Technology and Yale University.

Here we go again. Poor animals; they were trying to evolve, but they couldn't breathe. They needed fertilizer.

Picture again our lumber pile, now with bags of fertilizer next to everything. Picture Ann Gauger's test tube. Add some phosphorus. Bubble in some oxygen. Any help? How will simply adding more building blocks build a building?

But, the scientists object, we're talking about living cells before the first animals. Right. Saturate the oceans with bacteria, toss in the phosphorus, and watch the oxygen levels rise. Do they really expect trilobites, worms, and crustaceans to appear?

We place our phosphorus record in a quantitative biogeochemical model framework and find that a combination of enhanced phosphorus scavenging in anoxic, iron-rich oceans and a nutrient-based bistability in atmospheric oxygen levels could have resulted in a stable low-oxygen world. The combination of these factors may explain the protracted oxygenation of Earth's surface over the last 3.5 billion years of Earth history. However, our analysis also suggests that a fundamental shift in the phosphorus cycle may have occurred during the late Proterozoic eon (between 800 and 635 million years ago), coincident with a previously inferred shift in marine redox states, severe perturbations to Earth's climate system, and the emergence of animals.
The "emergence of animals." Evidently, those animals were waiting for their phosphorus order to arrive.

Let's review what's required for animal body plans that appeared abruptly at the Cambrian explosion: (1) new cell types, (2) new tissues, (3) new organs, (4) new genes, (5) new gene regulatory networks (GRNs), (6) new systems (digestive, muscular, skeletal, reproductive, central nervous systems, brains, etc.), (7) new levels of hierarchical integration of these systems, (8) new behaviors, (9) new defenses, (10) the ability to grow all these things from a single zygote.

The authors of the paper collected thousands of samples of shallow ocean sediment deposits, and carefully measured their phosphorus levels.

Theoretical predictions and observations from the geochemical record provide strong evidence that the first 80%-90% of Earth's 4.5-billion-year history was characterized by limited P burial in near-shore sediments, a pattern that we link to high C/P ratios in primary producers resulting from an Fe-based nutrient P trap. The shale record we present here, when coupled with our ocean-sediment biogeochemical model, illuminates an Earth system state in which dynamically coupled P- and N-limitation stabilized surface oxygen levels on billion-year timescales. However, there is evidence for at least periodic shifts away from pervasive Fe-rich waters in the late Tonian, or Ediacaran periods, coincident with our observed increase in sedimentary P enrichments. We propose that models seeking to explain the transition to an oxygen-rich ocean-atmosphere system in which early animals thrived and complex ecosystems developed should focus on mechanisms for overcoming enhanced P scavenging and transiting the N-fixation barrier that would act to prevent P-driven increases in ocean-atmosphere O2 levels during nascent global oxygenation events.
Minus the jargon:

The elevated availability of nutrients and bolstered oxygen also likely fueled evolution's greatest lunge forward.
They backpedal a little, saying, "The researchers are careful not to imply that phosphorous necessarily caused the chain reaction, but in sedimentary rock taken from coastal areas, the nutrient has marked the spot where that burst of life and climate change took off." So instead, they explain, "That first signal of phosphorus in Earth's coast shallows pops up in the shale record like a shot from a starting pistol in the race for abundant life."

Ah, now it all makes sense. Someone go over to our pile of lumber and fire a pistol.

The daily mail is Britain's blight?:Pros and cons.

Thursday 28 February 2019

Paying the bills with lottery tickets?

The “All Outcomes Are Equiprobable” Argument

Cornelius Hunter

 

 

I’ve been busy lately with a big landscaping job for the neighborhood evolutionist. He wanted a massive set of stones to be carefully arranged in his backyard. He wanted stones of different colors, and the careful arrangement would spell out “Evolution Is True.”
Unfortunately, the day I finished this big job there was an earthquake in the neighborhood which jumbled the stones I had carefully arranged. I had to go back to the evolutionist’s property and put the stones back in order.
To makes matters worse, the evolutionist wouldn’t pay me for the job. When I sued him he told the judge that I was lying. He said I didn’t do the job, but instead the arrangement of the stones was due to the recent earthquake.
I explained to the judge that such an event would be unlikely, but the evolutionist retorted that landscapers don’t understand probability. The evolutionist explained to the judge that all outcomes are equally probable. Every outcome, whether it spells out “Evolution Is True” or nothing at all, has a probability of one divided by the total number of possible arrangements. He said that I was committing a mistake that is common with nonscientific and uneducated people. He explained that if you toss a coin 500 times the sequence of heads and tails will be astronomically unlikely. But it happened. All such sequences, even if they spell out a message in Morse code, are equiprobable.
The judge agreed. He fined me for bringing a frivolous lawsuit against the evolutionist and made me write “Evolution Is True” 500 times.

Tuesday 26 February 2019

Toward a theory of devolution? III

Fasten Your Seat Belt; Behe’s Darwin Devolves Launches Today!
David Klinghoffer | @d_klinghoffer


To judge from the debate so far around Michael Behe’s book Darwin Devolves: The New Science About DNA That Challenges Evolutionyou would think it had been out for weeks. But no! You can only get a copy as of today, the official publication date. The book completes the trilogy that began with Darwin’s Black Box, which introduced the phrase “intelligent design” to many people around the world. But its critique, going to the core of evolutionary theory, stands on its own.

“Darwin’s mechanism,” Behe shows in the new book, “works chiefly by squandering genetic information for short-term gain.” That’s unguided evolution for you! How such a blind and fundamentally wasteful process could fashion the vertebrate eye you use in reading this, or the gear teeth that send the planthopper on its wonderful leaps — to cite two examples of “fathomless elegance” that Behe discusses — is the question that conventional evolutionary theory can’t answer.

Behe’s celebratory publication event is tomorrow evening in Bethlehem, PA, with Eric Metaxas. But in case you are thinking about joining them, it’s sold out. You will need to get on a waiting list.

A Scientific Dissent from Darwinism

Interestingly, the book takes flight just three weeks after Discovery Institute shared the news that the Scientific Dissent from Darwinism list had topped well over 1,000 PhD signers. That is, a thousand plus scientists who, in advancing the paradigm of design in biology over blind material forces alone, join Behe in being willing to see their careers and reputations abused for their candor. No evolutionist faces any similar threat.

Many more scientists are (prudently, often under Discovery Institute’s advice) waiting for the right time to step forward publicly. So Behe and Darwin Devolves represent far more than one biochemist on a lonely “quixotic” quest.

Now that the book is out, if the past few weeks are any guide, there will be ample turbulence ahead. Dr. Behe will be buffeted by winds of criticism, both fair and foul. There’s no surprise in that. Behe is the “Father of Intelligent Design,” according to Stephen Colbert. He is “close to heretical,” according to the New York Times Book Review. Of course they are going to come after him in fury.
Get your copy of Darwin Devolves today. And fasten your seat belt, please.

And still yet more demystifying of higher Ed.

John Stossel: What everyone's afraid to say about college and jobs

Today, all Americans are told, "Go to college!"

President Obama said, "College graduation has never been more valuable."

But economist Bryan Caplan says that most people shouldn't go.


"How many thousands of hours did you spend in classes studying subjects that you never thought about again?" he asks.

Lots, in my case. At Princeton, I learned to live with strangers, play cards and chase women, but I slept through boring lectures, which were most of them. At least tuition was only $2,000. Now it's almost $50,000.

"People usually just want to talk about the tuition, which is a big deal, but there's also all the years that people spend in school when they could have been doing something else," points out Caplan in my new YouTube video.

"If you just take a look at the faces of students, it's obvious that they're bored," he says. "People are there primarily in order to get a good job."

That sounds like a good reason to go to college. But Caplan, in his new book, "The Case Against Education," argues that there's little connection between what we absorb in college and our ability to do a job.

"It's totally true that when people get fancier degrees their income generally goes up," concedes Caplan, but "the reason why this is happening is not that college pours tons of job skills into you. The reason is ... a diploma is a signaling device."

It tells employers that you were smart enough to get through college.

But when most everyone goes to college, says Caplan, "You just raise the bar. Imagine you're at a concert, and you want to see better. Stand up and of course you'll see better. But if everyone stands up, you just block each other's views."

That's why today, he says, high-end waiters are expected to have college degrees.

"You aren't saying: you, individual, don't go to college," I interjected."You're saying we as a country are suckers to subsidize it."

"Exactly," replied Caplan. "Just because it is lucrative for an individual doesn't mean it's a good idea for a country."

Caplan says if students really want to learn, they can do it without incurring tuition debt.

"If you want to go to Princeton, you don't have to apply," he points out. "Just move to the town and start attending classes."

That's generally true. At most schools you can crash college lectures for free. But almost no one does that.

"In people's bones, they realize that what really counts is that diploma," concludes Caplan.

Because that diploma is now usually subsidized by taxpayers, college costs more. Tuition has risen at triple the rate of inflation.

It's not clear students learn more for their extra tuition, but colleges' facilities sure have gotten fancier. They compete by offering things like luxurious swimming pools and gourmet dining. That probably won't help you get a job.

"If you're doing computer science or electrical engineering, then you probably are actually learning a bunch of useful skills," Caplan says. But students now often major in abstract topics like social justice, diversity studies, multicultural studies.

"But don't the liberal arts expand people's minds?" I asked. Philosophy? Literature? Isn't it all making our brains work better?

"That's the kind of thing you expect teachers to say," answered Caplan. "There's a whole field of people who have actually studied this (and) they generally come away after looking at a lot of evidence saying, 'Wow, actually it's wishful thinking.'"

A study found that a third of people haven't detectably learned anything after four years in college.

Although Caplan thinks college is mostly a scam, he says there's one type of person who definitely benefits -- professors like him.

"I'm a tenured professor," he said. "A tenured professor cannot be fired. ... You got a nice income and there are almost no demands upon your time."

Professor Caplan is only expected to teach for five hours a week.

I told him that sounded like a government-subsidized rip-off.

"Yeah. Well, I'm a whistleblower," replied Caplan.

On treating non-academics like adults.

Naval Academy Philosopher: Laypeople Entitled to an Opinion on Science Questions

Sarah Chaffee



This sounds more than a bit like . Douglas Axe It's a   presentation given at the Conference of the Society for Philosophy of Science in Practice this past June by Larry Lengbeyer, Associate Professor of Philosophy at the U.S. Naval Academy. The talk, "Defending Limited Non-Deference to Science Experts," explains logically why laypeople are not barred from disagreeing with scientists.


Of special interest is the section defending disagreement based on a perception of "untrustworthy science." Lengbeyer acknowledges that this is a tricky call for laypeople to make. However, he notes that people have access to credible scientific sources. And "some of the time, the outsider will have the ability to offer evaluations that deserve respect, including critical evaluations..." This is not common, but it happens. He lists more than 17 different logical flaws that a layperson may identify.

Let's take a look at some of his "critical evaluations" in light of the evolution debate. A non-scientist can reasonably take issue with scientists when:

[T]he theory has been confirmed/validated in highly artificial conditions, or with a data set that is limited in important ways, calling into question its applicability to other contexts...

This sounds a lot like the problems with current scenarios for the origin of life. Self-replicating RNA is designed in the lab, the Miller-Urey experiment was conducted under conditions very different from those scientists believe were the case on the early Earth, and hydrothermal vents may not be totally nurturing to life.

[T]he stated findings or conclusions are not convincingly warranted by the study results, on account of one or more methodological failures [overgeneralization, overstatement, cherry picking, possibly p-hacking]...

What are the problems with neo-Darwinism? Generally that natural selection acting on random mutation leads to microevolution (such as changes in the GalƔpagos finches) rather than macroevolution. When researchers claim that they have observed speciation in action, a closer look often reveals only small changes -- instances of breaking genes, not innovation of new information. Overgeneralization and overstatement are rampant.

I could list more -- "conclusions depend[ing] upon questionable factual assumptions" reminds me of multiverse explanations for fine-tuning, etc.


Axe explains the importance of allowing laypeople to weigh scientific arguments, using their own power of reason to arrive at a plausible opinion. He notes in:  


...[O]pen science brings an end to authoritarian science by emphasizing the scientific value of public opinion. Because everyone practices common science, public reception of scientific claims is arguably the most significant form of peer review. For professional scientists to assume that public skepticism toward their ideas can only be caused by public ignorance is just plain arrogant. If ignorance is the cause, clearer teaching should be the remedy. When that proves elusive or ineffective, professional scientists need to be willing to find fault with their ideas, not the public.

This leads to the third piece of good news: Embracing open science empowers people who will never earn PhDs to become full participants in the scientific debates that matter to them. Instead of merely following expert debates, nonexperts should expect important issues that touch their lives to be framed in terms of common science. Once they are, everyone becomes qualified to enter the debate. This doesn't apply to intrinsically technical subjects, of course, but the matters of deepest importance to how we live are never intrinsically technical."

Logic wins over scientific groupthink. Lengbeyer concludes:

Many self-styled defenders of science call for a populace better educated in science, thinking that this will produce people who happily and humbly comply with science-based pronouncements. Now, the laity is indeed ignorant about the scientific method, but this produces an excess of deference, not a deficiency thereof, as there remains great ignorance about the contributions of imperfect, interested, biased, perspective-laden human judgment to scientific method. And this is compounded by an ignorance of the laity's own capacity for more direct involvement in science-based policymaking. The typical layperson is something like the woman of 1800 who believed the (perhaps sincere) assurances of the men in her life that she did not have the necessities for having a say in political or financial or intellectual matters.

If I am right, then the scientific world ought to take some of the medicine it prescribes to its public opponents, and humble itself intellectually. Acknowledging frankly the serious limitations of science (and not only the convenient one about the provisionality of its claims), and respecting non-scientists' rightful exercise of intellectual autonomy, might enhance the credibility of the scientific community and recoup some of its lost cultural authority. Science deserves a good deal of deference; science hubris and over-exclusivity do not.

...

In any case, non-scientists are decreasingly willing to diffidently place their personal choices in the hands of distant science-based authorities. There is likely no going back to such a world. Better to embrace the emerging participatory model, and to concentrate on elevating laypersons in respectful and empowering ways so that they can play their limited role competently, perhaps gradually increasing their science understanding so as to narrow the gulf between them and the experts.

The "participatory model" is a worthy complement to Axe's "common science."