Search This Blog

Saturday 2 July 2016

On the collapse Darwinism's prima facie case.

Alleged Instances of Observed Speciation -- Evolution's Smoking Gun Is Still Missing
Editor's note: William Dembski and Jonathan Wells, leading figures in the intelligent design movement, are co-authors of The Design of Life: Discovering Signs of Intelligence in Biological Systems. Originally published by the Foundation for Thought and Ethics, this path-breaking work explores some of the most important arguments for intelligent design in biology. To celebrate the launch of Foundation for Thought & Ethics Books as an imprint of Discovery Institute Press, we will be publishing excerpts from the book here at Evolution News. Through July 8, we will also be making the book available for only $10 -- that's more than a 70 percent discount, and it includes both the full-color hardcover and an accompanying CD with additional materials. If you haven't read this classic book, now is your chance! Order now, because this special discount won't last long.

Despite the absence of evidence for the ability of reproductive isolation to harness the mechanisms of genetic change and thereby to produce new species, some Darwinists still claim that there are many instances of observed speciation.1 But most of these alleged instances are in fact analyses of existing species that are used to defend one or another theory of how they might have originated -- such as the theories of allopatric and sympatric speciation, or the bottleneck and founder effects. Analyzing existing species to support one or another theory of speciation, however, is not the same as observing speciation in action.

There actually are some confirmed cases of observed speciation, but these are due to an increase in the number of chromosomes, or "polyploidy." Such cases, however, are limited to flowering plants and result from hybridizing two species to form a new one.2 Furthermore, according to evolutionary biologist Douglas Futuyma, speciation that results from polyploidy (also called "secondary speciation") "does not confer major new morphological characteristics . . . [and] does not cause the evolution of new genera" or higher taxonomic levels.3 Darwinian evolution, by contrast, depends on taking a single existing species and splitting off new species from it (called "primary speciation"), which then in turn diverge and split, diverge and split, over and over again. Only primary speciation, and not secondary speciation, could produce the branching-tree pattern required by Darwinian evolution.

Of the many instances of observed speciation alleged by Darwinists, only five come close to claiming observed primary speciation. First, in 1962, from a single lab population of Drosophila (fruit flies), J.M. Thoday and J.B. Gibson bred only those flies with the highest and lowest number of bristles (the insect equivalent of hair). After 12 generations, the experiment produced two populations that not only differed in bristle number but also showed "strong though partial isolation." Yet Thoday and Gibson not did claim to have produced a new species. Furthermore, other laboratories were unable to reproduce their results.4

Second, in 1958 Theodosius Dobzhansky and Olga Pavlovsky started a laboratory population of fruit flies using a single female of a strain from Colombia. Crosses between that fly and several other strains produced fertile hybrids in the laboratory. In 1963, however, similar crosses yielded sterile hybrids. In 1966, Dobzhansky and Pavlovsky concluded that the strain they had introduced in 1958 had become "a new race or incipient species . . . in the laboratory at some time between 1958 and 1963."5 But Coyne and Orr, writing in 2004, suspect their results were "due to contamination of cultures by other subspecies."6 In any case, Dobzhansky and Pavlovsky reported only a "new race or incipient species," not a new species.

Third, in 1964 biologists collected some marine worms in Los Angeles Harbor and used them to start a lab colony. When they went back to the same location 12 years later, the original population had disappeared, so they collected worms from two other locations several miles away, and these were used to start two new lab colonies. In 1989, researchers found that the two new colonies could interbreed with each other but not with the Los Angeles Harbor colony that had been started 25 years earlier. In 1992, James Weinberg and his colleagues called this an observed instance of "rapid speciation," based on the assumption that the original colony had "speciated in the laboratory, rather than before 1964."7 A few years later, however, tests performed by Weinberg and two others showed that the original population was "already a species different from" the two new colonies "at the time when it was originally sampled in 1964."8 No speciation had occurred.

Fourth, in 1969 E. Paterniani reported an experiment on maize in which breeding was permitted only between individuals possessing two extremes of a particular trait. Paterniani noted the development of "an almost complete reproductive isolation between two maize populations" but did not claim that a new species had been produced.9

Fifth and last, in the 1980s William R. Rice and George W. Salt subjected a population of fruit flies to eight different environments. They then took the flies that preferred the two most extreme environments and allowed only them to breed. Within thirty generations the flies had sorted themselves into two populations that did not interbreed. Even so, Rice and Salt did not claim to have produced two new species. More modestly, they believed only that "incipient speciation" had occurred.10

So, of the five alleged instances of observed primary speciation, only one (Weinberg's) claimed to have observed actual speciation -- and it was later retracted. The other four (one of which could not be reproduced by other scientists and one of which was not controlled for contamination) claimed only some degree of reproductive isolation or "incipient speciation."

What is "incipient speciation"? Darwin wrote: "According to my view, varieties are species in the process of formation, or are, as I have called them, incipient species."11 But how can we possibly know whether two varieties (or races) are in the process of becoming separate species? St. Bernards and Chihuahuas are two varieties of dog that cannot interbreed naturally, but they are members of the same species. Maybe they are on their way to becoming separate species, or maybe not. The two varieties of Rhagoletis pomonella described in the previous section do not interbreed in the wild, but they look exactly alike and are still capable of mating in the laboratory. Like different breeds of dogs, they are still members of the same species. Calling them "incipient species" amounts to no more than a prediction that they will eventually become separate species. But maybe they won't. Short of waiting to see whether the prediction comes true, we can't really know. And given our limited lifespans, we don't have time to wait (at least not by conventional evolutionary timescales).

Darwinists therefore discount the lack of observed instances of primary speciation by saying that it takes too long to observe them. But if it takes too long for scientific investigators to observe primary speciation, then there will never be anything more than indirect evidence for the first and most important step in Darwinian evolution. Darwinists claim that all species have descended from a common ancestor through variation and selection. But until they can point to a single observed instance of primary speciation, their claim must remain an unverified assumption, not an observed scientific fact. University of Bristol bacteriologist Alan H. Linton made precisely this point when in 2001 he assessed the direct evidence of speciation: 

None exists in the literature claiming that one species has been shown to evolve into another. Bacteria, the simplest form of independent life, are ideal for this kind of study, with generation times of twenty to thirty minutes, and populations achieved after eighteen hours. But throughout 150 years of the science of bacteriology, there is no evidence that one species of bacteria has changed into another. . . . Since there is no evidence for species changes between the simplest forms of unicellular life, it is not surprising that there is no evidence for evolution from prokaryotic [e.g., bacterial] to eukaryotic [e.g., plant and animal] cells, let alone throughout the whole array of higher multicellular organisms.12

So except for secondary speciation, which is not what Darwin's theory needs, there are no observed instances of the origin of species. As evolutionary biologists Lynn Margulis and Dorion Sagan wrote in 2002: "Speciation, whether in the remote Galápagos, in the laboratory cages of the drosophilosophers, or in the crowded sediments of the paleontologists, still has never been directly traced."13 Evolution's smoking gun is still missing.

References:

(1) See Catherine A. Callaghan, "Instances of Observed Speciation," The American Biology Teacher 49 (1987): 34–36; Joseph Boxhorn, "Observed Instances of Speciation," The Talk.Origins Archive, September 1, 1995, available online (last accessed January 9, 2007); Chris Stassen, James Meritt, Annelise Lilje, and L. Drew Davis, "Some More Observed Speciation Events," The Talk.Origins Archive, 1997, available online (last accessed January 9, 2007).

(2) See Justin Ramsey and Douglas W. Schemske, "Neopolyploidy in Flowering Plants," Annual Review of Ecology and Systematics 33 (2002): 589–639; D. M. Rosenthal, L. H. Rieseberg, and L. A. Donovan, "Re-creating Ancient Hybrid Species' Complex Phenotypes from Early-Generation Synthetic Hybrids: Three Examples Using Wild Sunflowers," The American Naturalist 166(1) (2005): 26–41.

(3) Douglas J. Futuyma, Evolution (Sunderland, Mass.: Sinauer Associates, 2005), 398.

(4) J.M. Thoday and J. B. Gibson, "Isolation by Disruptive Selection," Nature 193 (1962): 1164–1166. J. M. Thoday and J. B. Gibson, "The Probability of Isolation by Disruptive Selection," The American Naturalist 104 (1970): 219–230. Coyne and Orr, Speciation, 138.

(5) Theodosius Dobzhansky and Olga Pavlovsky, "Spontaneous Origin of an Incipient Species in the Drosophila Paulistorum Complex," Proceedings of the National Academy of Sciences 55 (1966): 727–733.

(6) Coyne and Orr, Speciation, 138.

(7) James R. Weinberg, Victoria R. Starczak, and Daniele Jörg, "Evidence for Rapid Speciation Following a Founder Event in the Laboratory," Evolution 46 (1992): 1214–1220.

(8) Francisco Rodriquez-Trelles, James R. Weinberg, and Francisco J. Ayala, "Presumptive Rapid Speciation After a Founder Event in a Laboratory Population of Nereis: Allozyme Electrophoretic Evidence Does Not Support the Hypothesis," Evolution 50 (1996): 457–461.

(9) E. Paterniani, "Selection for Reproductive Isolation Between Two Populations of Maize, Zea mays L.," Evolution 23 (1969): 534–547.

(10) William R. Rice and George W. Salt, "Speciation via Disruptive Selection on Habitat Preference: Experimental Evidence," The American Naturalist 131 (1988): 911–917. See also Coyne and Orr, Speciation, 138–141.

(11) Darwin, Origin of Species, 111.

(12) Alan Linton, "Scant Search for the Maker," The Times Higher Education Supplement (April 20, 2001), Book Section, 29, available online with registration (last accessed January 9, 2007).


(13) Lynn Margulis and Dorion Sagan, Acquiring Genomes: A Theory of the Origins of Species (New York: Basic Books, 2002), 32.

Why the geekocracy will not save us.

Science, Knowledge, and the "Epistemic Horizon"
David Klinghoffer

National Review Online's Kevin Williamson has sometimes rubbed me the wrong way, but in the 24 hours or so since Neil deGrasse Tyson shot off his "#Rationalia" tweet, Williamson composed an essay in response that can only be called profound. Tyson, the "dumbest smart person on Twitter," proposed a "virtual country," with a "one-line Constitution: All policy shall be based on the weight of evidence." In reply, Williamson offers the image of a limit to knowledge, an "epistemtic horizon" like the "event horizon" of a black hole.

Read it all for yourself, but this is the conclusion and upshot:

The epistemic horizon is not very broad. We do not, in fact, know what the results of various kinds of economic policies or social policies will be, and there isn't any evidence that can tell us with any degree of certainty. The housing projects that mar our cities weren't supposed to turn out like that; neither was the federal push to encourage home-ownership or to encourage the substitution of carbohydrates for fats and proteins in our diets. A truly rational policy of the sort that Tyson imagines must take into account not only how little we know about the future but how little we can know about the future, even if we consult the smartest, saintliest, and most disinterested experts among us.
That is part of the case for limited government and free markets. Government can do some things, such as guard borders (though ours chooses not to) and fight off foreign invaders. There are things that it cannot do, even in principle, such as impose a "rational" order on the nation's energy markets, deciding that x share of our electricity supply shall come from solar, y share from wind, z share from natural gas, all calculated to economic and environmental ideals. That is simply beyond its ken, even if all the best people -- including Tyson, from time to time -- pretend that it is otherwise. Free markets go about solving social problems in the opposite way: Dozens, or thousands, or millions, or even billions of people, firms, organizations, investors, and business managers trying dozens or thousands of approaches to solving social problems....

There isn't a road to Rationalia. There are billions of them, negotiated by individuals and institutions dozens or hundreds of times a day, every time they make a significant choice. Government programs are, by their nature, centralized, unitary, and static attempts to impose a rational order on complexity beyond the understanding of the people who would claim to manage it....

It isn't ideology that imposes a relatively narrow circle on what government planners can do. And, with all due respect to the genius of F. A. Hayek ("The curious task of economics is to demonstrate to men how little they really know about what they imagine they can design"), it isn't only economics, either. The limitations on human knowledge are real, and they are consequential. As men like him have done for ages, Tyson dreams of a world of self-evident choices, overseen by men of reason such as himself who occupy a position that we cannot help but notice is godlike. It's nice to imagine ruling from an Olympus of Reason, with men and nations arrayed before one as on a chessboard.

Down here on Earth, the view is rather different, and the lines of sight inside the epistemic horizon are not nearly so long as our would-be rulers imagine.

I would add -- and this he doesn't say -- that the idea of a limit or horizon to knowledge goes far beyond politics, economics, urban planning, the issues that seem to animate Kevin Williamson. It includes faith, notwithstanding the certainty of the New Atheists and some religious spokesmen as well. In this context, I think of the Talmud's interesting gnomic statement warning of four boundaries of reality beyond which we are better off not seeking to gaze -- "what is above, what is below, what was before, and what will be after."
The idea of an epistemic horizon definitely includes science, especially historical scientific theories that seek to lay bare biological origins. Everyone who speaks about science in public should be reminded of this.

I don't mean we can never have an informed opinion on how life arose, became complex and diverse. That's exactly what we talk about when we talk about intelligent design. But the horizon should be kept in view when we hear Darwinian evolution asserted as "fact" -- "as much a fact as gravity or erosion," in a typical formulation. No, that is wrong.


ID advocates don't talk that way -- ID as "fact," rather than a tentative inference. And good for them. That modesty is a point in favor of the design argument.

Friday 1 July 2016

On the challenge of protecting our children:a commentary by the Watchtower Society

How to Protect Your Children

FEW of us want to dwell on the subject of sexual abuse of children. Parents shudder at the very thought of it! Such abuse, however, is a frightening and unpleasant reality in today’s world, and its effects on children can be devastating. Is the matter worth considering? Well, what would you be willing to give for the sake of your child’s safety? Learning about the unpleasant realities of abuse is surely a small price to pay. Such knowledge can really make a difference.


Do not let the plague of abuse rob you of your courage. At the very least, you have power that your child does not have—strengths that it will take years, even decades, for your child to gain. The passing years have brought you a fund of knowledge, experience, and wisdom. The key is to enhance those strengths and put them to use in protecting your child. We will discuss three basic steps that every parent can take. They are as follows: (1) Become your child’s first line of defense against abuse, (2) give your child some needed background education, and (3) equip your child with some basic protective tools.

Are You the First Line of Defense?

The primary responsibility for protecting children against abuse belongs to parents, not to children. So educating parents comes before educating children. If you are a parent, there are a few things you need to know about child abuse. You need to know who abuse children and how they go about it. Parents often think of molesters as strangers who lurk in the shadows, seeking ways to kidnap and rape children. Such monsters certainly do exist. The news media bring them to our attention very often. However, they are relatively rare. In about 90 percent of the cases of sexual abuse of a child, the perpetrator is someone the child already knows and trusts.

Naturally, you do not want to believe that an affable neighbor, teacher, health-care worker, coach, or relative could lust after your child. In truth, most people are not like that. There is no need to become suspicious of everybody around you. Still, you can protect your child by learning how the typical abuser operates.—See the box on page 6.

Knowing such tactics can make you, the parent, better prepared to act as the first line of defense. For instance, if someone who appears more interested in children than in adults singles out your child for special attention and gifts or offers free babysitting or private excursions with your child, what will you do? Decide that the person must be a molester? No. Do not be quick to jump to conclusions. Such behavior may be quite innocent. Nonetheless, it can put you on the alert. The Bible says: “Anyone inexperienced puts faith in every word, but the shrewd one considers his steps.”—Proverbs 14:15.

Remember, any offer that sounds too good to be true may be just that. Carefully screen anyone who volunteers to spend time alone with your child. Let such an individual know that you are likely to check on your child at any time. Melissa and Brad, young parents of three boys, are cautious about leaving a child alone with an adult. When one son had music lessons at home, Melissa told the instructor: “I’ll be in and out of the room while you’re here.” Such vigilance may sound extreme, but these parents would rather be safe than sorry.

Be actively involved in your child’s activities, friendships, and schoolwork. Learn all the details about any planned excursion. One mental-health professional who spent 33 years working with cases of sexual abuse notes that he has seen countless cases that could have been prevented by simple vigilance on the parents’ part. He quotes one convicted molester as saying: “Parents literally give us their children. . . . They sure made it easy for me.” Remember, most molesters prefer easy targets. Parents who are actively involved in their children’s lives make their children difficult targets.

Another way to act as your child’s first line of defense is to be a good listener. Children will rarely disclose abuse directly; they are too ashamed and worried about the reaction. So listen carefully, even for subtle clues.* If your child says something that concerns you, calmly use questions to draw him out.* If he says that he does not want a certain babysitter to come back, ask why. If he says that an adult plays funny games with him, ask him: “What kind of game? What does he do?” If he complains that someone tickled him, ask him, “Where did he tickle you?” Do not be quick to dismiss a child’s answers. Abusers tell a child that no one will believe him; all too often, that is true. And if a child has been abused, being believed and supported by a parent is a big step toward recovery.


Be your child’s first line of defense

Give Your Child Background Education

One reference work on the subject of child abuse quotes a convicted molester as saying: “Give me a kid who knows nothing about sex, and you’ve given me my next victim.” Those chilling words are a useful reminder to parents. Children who are ignorant about sex are much easier for molesters to fool. The Bible says that knowledge and wisdom can deliver us “from the man speaking perverse things.” (Proverbs 2:10-12) Is that not what you want for your child? Then, as your second basic step in protecting him, do not hold back from teaching him about this important subject.

How, though, do you go about it? More than a few parents find the subject of sex a bit awkward to discuss with children. Your child may find the subject even more awkward, and he is not likely to bring it up with you. So take the initiative. Melissa says: “We started early, with naming the body parts. We used real words, not baby words, to show them that there is nothing funny or shameful about any part of their body.” Instruction about abuse follows naturally. Many parents simply tell their children that the parts of their body that a bathing suit covers are private and special.

Says Heather, mentioned in the preceding article: “Scott and I told our son that his penis is private, personal, and not a toy. It’s not for anyone to play with—not for Mommy, not for Daddy, not even for a doctor. When we take him to the doctor, I explain that he’s only going to make sure everything is OK, and that’s why he may touch there.” Both parents take part in these little talks from time to time, and they assure the child that he can always come to them and tell them if anyone touches him in a way that’s wrong or makes him feel uncomfortable. Experts in child care and abuse prevention recommend that all parents have similar talks with their children.

Many have found the book Learn From the Great Teacher* to be a real help in teaching this subject. Chapter 32, “How Jesus Was Protected,” has a direct yet comforting message for children on the dangers of abuse and the importance of staying safe. “The book has given us a perfect way to reinforce what we have told our children personally,” says Melissa.

In today’s world children need to know that there are some people who want to touch children or get children to touch them in ways that are wrong. These warnings need not fill children with fear or make them distrust all adults. “It’s just a safety message,” says Heather. “And it’s one message among many others, most of them having nothing to do with abuse. It hasn’t made my son fearful at all.”

Your child’s education should include a balanced view of obedience. Teaching a child to obey is an important and difficult lesson. (Colossians 3:20) However, such lessons can go too far. If a child is taught that he must always obey any adult, regardless of the circumstances, he is vulnerable to abuse. Molesters are quick to notice when children are overly compliant. Wise parents teach their children that obedience is relative. For Christians, that is not as complicated as it may sound. It simply means saying to them: “If anybody tells you to do something that Jehovah God says is wrong, you don’t have to do it. Even Mommy or Daddy should never tell you to do something that Jehovah says is wrong. And you can always tell either Mommy or Daddy if someone tries to get you to do something wrong.”

Finally, let your child know that no one should ask him to keep a secret from you. Tell him that if anyone asks him to keep any kind of secret from you, he should always come and let you know. No matter what he is told—even if scary threats are made or he has done something wrong himself—it is always OK to come to Mommy or Daddy and tell them all about it. Such instruction need not scare your child. You can reassure him that most people would never do such things—touch him where they shouldn’t, ask him to disobey God, or ask him to keep a secret. Like a planned escape route in case of fire, these are just-in-case messages and will probably never be needed.


Give your child background education

Equip Your Child With Some Basic Protective Tools

The third step we will discuss is to give your child some simple actions to take in case someone tries to take advantage of him when you are not there. One method that is often recommended is like a game. Parents ask “What if . . . ?” and the child answers. You might say, “What if we were at the store together and we got separated? How would you find me?” The child’s answer may not be exactly what you would hope for, but you can guide him along with further questions, such as “Can you think of anything you could do that would be safer?”

You can use similar questions to ask a child what the safest response would be if someone tried to touch him in a wrong way. If the child is easily alarmed by such questions, you might try telling a story about another child. For example: “A little girl is with a relative she likes, but then he tries to touch her where he shouldn’t. What do you think she should do to stay safe?”


Equip your child with basic protective tools

What should you teach your child to do in situations like the one above? Notes one author: “A firm ‘No!’ or ‘Don’t do that!’ or ‘Leave me alone!’ does wonders to frighten the seductive offender into retreat and into rethinking his or her choice of victim.” Help your child act out brief scenarios so that he feels confident to refuse loudly, get away quickly, and report to you whatever has happened. A child who seems to understand the training thoroughly may easily forget it within a few weeks or months. So repeat this training regularly.

All the child’s direct caregivers, including the males—whether father, stepfather, or other male relatives—should be part of these discussions. Why? Because all involved in such teaching are, in effect, promising the child that they will never commit such acts of abuse. Sadly, much sexual abuse occurs right within the confines of the family. The following article will discuss how you can make your family a safe haven in an abusive world.

Experts note that many abused children give nonverbal clues that something is wrong. For example, if a child suddenly regresses to behavior he had outgrown some time earlier, such as bed-wetting, clinginess, or fear of being alone, he may be sending a signal that something serious is upsetting him. Such symptoms should not be taken as definite proof of abuse. Calmly draw out your child to learn the cause of the distress so that you can offer comfort, reassurance, and protection.

For the sake of simplicity, both the abuser and the victim are referred to here as males. Regardless of gender, though, the same principles apply.


Published by Jehovah’s Witnesses.

SEXUAL ABUSE—A GLOBAL PROBLEM

In 2006 the secretary-general of the United Nations transmitted to the UN General Assembly a world report on violence against children that had been compiled by an independent expert for the UN. During a recent year, according to the report, an estimated 150 million girls and 73 million boys under 18 years of age experienced “forced sexual intercourse or other forms of sexual violence.” Those numbers are staggering, but the report notes: “This is certainly an underestimate.” A review of studies from 21 countries suggested that in some places as many as 36 percent of women and 29 percent of men had been subjected to some form of sexual victimization in childhood. The majority of the perpetrators were relatives!

A PATTERN OF SEDUCTION

An abuser is likely to be too clever to use force on his victims. Rather, he may prefer to seduce children gradually. He begins by selecting a target, often a child who seems vulnerable and trusting, thus relatively easy to control. Next, he singles out that child for special attention. He may also try to win the trust of the child’s parents. Molesters are often expert at pretending to be sincerely interested in the child and the family.
In time, the molester will begin grooming the child for abuse. He gradually becomes more physical with the child through innocent-looking displays of affection, playful wrestling, and tickling. He may give generous gifts and begin to separate the child from friends, siblings, and parents, in order to spend time alone with the child. At some point he may ask the child to keep some minor secret from the parents—perhaps a gift or plans for some future excursion. Such tactics set the stage for seduction. When the abuser has won the child’s trust and that of the parents, he is ready to make his move.
Again, he is likely to be subtle about it rather than violent or forceful. He may exploit the child’s natural curiosity about sex, offering to act as a “teacher,” or he may suggest that they play a “special game” together that only they will know about. He may try exposing the child to pornography in order to make such behavior seem normal.

If he succeeds in molesting the child, he is now eager to ensure that the child does not tell anyone about it. He may use a variety of tactics, including threats, blackmail, and blame, or perhaps a combination of these. For example, he may say: “It’s your fault. You didn’t tell me to stop.” He may add: “If you tell your parents, they’ll call the police and send me to jail forever.” Or he may say: “It’s our secret. If you tell, no one will believe you. If your parents ever do find out, I will hurt them.” There is no end to the devious and malicious tactics such individuals will try.

Separating fact from slander/libel.

Jehovah’s Witnesses Have the Best Record For Protecting its Members From Child Molesters, Fornicators and Abusers

Jehovah’s Witnesses Have the Best Record For Protecting its Members From Child Molesters, Fornicators and Abusers
When you compare Jehovah’s Witnesses with all other religions or secular organizations, Witnesses have the best record for protecting its members from child molesters, fornicators and other perverts.

Most other religions did nothing about priests and ministers who were child molesters and homosexual deviants, and continued to simply transfer these clergy to other congregations when found out. But, Jehovah's Witnesses would instantly remove these individuals from serving in any teaching capacity when they were found out and disfellowship them. What is reprehensible is that other religions constantly criticized the Witnesses for their disfellowshipping policy.

Now, these religions, Protestant and Catholic, are facing thousands of legal cases and paying enormous settlements. At the same time, any legal charges against the Watchtower Society has repeatedly been dismissed by the courts because they determined that Witnesses have NEVER hidden child molesters nor have they ever just transferred Elders accused of molestation to another congregation. So historically Witnesses have the BEST legal record of any religion.

Even the recent adverse decision by one rogue jury in the Conti case was not because we transferred a known child molester–the man had already been reproved and removed from any position in the congregation. And the jury went completely contrary to the legal precedents set in similar cases against other religions. That is, no religion has ever been legally required to make a public announcement of a congregant’s specific sexual misdeeds. In fact, doing so would have broken the law in most countries.

While thousands of Protestant clergy and thousands of Catholic priests were charged with child abuse in the last decades, only a little over a dozen Witness Elders have been charged in the last 100 years.

In official polls between 25% and 40% of clergy admitted that they had engaged in sexual behavior with some member of their flock and about 15% of clergy are homosexual. And most religions do almost nothing about these clergy!

So, a more valid question would be to ask if other religions have continued to allow fornicators, homosexuals and adulterers to be ministers, priests and teachers?!!

But, among the Witnesses the very few elders who commit immoral acts are instantly removed and most likely disfellowshipped. The media and opposers like to sensationalize a couple of cases where someone was not removed immediately, but those cases are anomalies and occurred only because the organization’s policies were improperly ignored by individual elders.


Also many like to misrepresent the “two witness” rule. This rule has NEVER prevented removal of a child molester. It never took more than one witness for someone to be reported to the authorities for molestation and even before the current government laws on reporting molestations were passed, Witnesses still investigated all accusations and disfellowshipped many without requiring two witnesses. And definitely, when someone was accused of molesting *different* children then there are two witnesses and they would be disfellowshipped.

In actuality, I've seen the courts several times dismiss charges against child molesters who have been disfellowshipped by Witnesses.


To see the actual facts regarding this subject go to:



SOURCE: This is an answer by BAR_ANERGES to a question at Yahoo Answers.

Wednesday 29 June 2016

Supposed bridge between land and marine mammals a bridge to nowhere.

Whale of a Tale: Straining at Mutational Gnats While Swallowing Genetic Camels
Evolution News & Views

If there was ever a prime hunting ground for evolutionary evidence in the genes, it should be in the relationship between land mammals and marine mammals. Think of the obvious differences between a four-footed ancestor and a whale: the scope of the genetic changes necessary to transform one into the other in a relatively short time would be staggering.

According to Darwin's theory, furthermore, it happened three times! Cetaceans (dolphins and whales), pinnipeds (seals, sea lions and walruses), and sirens (manatees and dugongs) are believed to have evolved their seagoing lifestyles independently within the last 60 million years.

Three scientists from the University of Pittsburgh looked into the genes for insight into this "great transformation" undertaken by the three groups of marine mammals. In a paper in Molecular Biology and Evolution, they announce the discovery that "Hundreds of genes experienced convergent shifts in selective pressure in marine mammals" [emphasis added].

A look at the details, though, gives a critical reader cause to think celebrations might be a tad premature. Why? Well, for one thing, shouldn't there be thousands? In the film Living Waters, Richard Sternberg considers the number of adaptations required to be "unfathomably complicated" to allow a land animal to live entirely in an aquatic environment. The film lists just a few categories of adaptations for humpback whales:

Respiratory system

Locomotive structures

Musculoskeletal system

Dentition

Urinary system

Cardiopulmonary system

Thermoregulation

Sensory organs

Reproductive organs

You can imagine any of these outward changes requiring thousands of genetic changes. "Just think of all the parameters that would have to be modified," Sternberg says, "and then multiply that by, I don't know -- a thousandfold, or more than that. That's the scale of the problem that you're dealing with." In the Q&A feature of the film Icons of Evolution, David Berlinski tried to quantify the number of morphological changes necessary to turn a cow into a whale (like turning a car into a submarine), and stopped counting at 50,000.

It's hard, therefore, to get excited about "hundreds of genes" announced by the Pittsburgh crew. Do these genes deal with the major modifications in whales? You decide:

We present evidence of widespread convergence at the gene level by identifying parallel shifts in evolutionary rate during three independent episodes of mammalian adaptation to the marine environment. Hundreds of genes accelerated their evolutionary rates in all three marine mammal lineages during their transition to aquatic life. These marine-accelerated genes are highly enriched for pathways that control recognized functional adaptations in marine mammals, including muscle physiology, lipid-metabolism, sensory systems, and skin and connective tissue. The accelerations resulted from both adaptive evolution as seen in skin and lung genes, and loss of function as in gustatory and olfactory genes. In regard to sensory systems, this finding provides further evidence that reduced senses of taste and smell are ubiquitous in marine mammals.
Let's grant that adaptations to skin, muscles, lungs, and sensory systems are important. It's a little odd that they get excited about "loss of function" in taste and smell that "has been suggested to result from change in prey, swallowing food whole, and the masking of tastes by seawater." That sounds Lamarckian. You'd hope to hear about how Darwinian natural selection produced one of the real innovations, like the origin of dolphin sonar, the blowhole, the tail fluke, or the cooling system for the internalized male testes described in Living Waters. But score a few points for Darwin. Not quite 50,000, but four or five.

But wait! When you look into the details of the paper, you find reasons to doubt even the examples they offer as evidence of positive selection in the genes.

First of all, they didn't really witness genetic evolution as much as convergence in the "rate" of change in genes that they assume occurred by evolution. Isn't that circular? Don't you have to believe the animals evolved in the standard evolutionary timeline before accepting this as evidence?

While past studies have searched for convergent changes at specific amino acid sites, we propose an alternative strategy to identify those genes that experienced convergent changes in their selective pressures, visible as changes in evolutionary rate specifically in the marine lineages. We present evidence of widespread convergence at the gene level by identifying parallel shifts in evolutionary rate during three independent episodes of mammalian adaptation to the marine environment.
In other words, they looked at the endpoint differences and merely assumed natural selection brought them about. Design advocates would expect the differences were planned for the aquatic lifestyle of these mammals.

Second, cases of "positive selection" appear strained. They "observed strong evidence of positive selection and a marine-acceleration in a large number of skin-associated proteins." They claim further positive selection for some lung surfactant proteins. But those are only building-block changes; they say nothing about how hairy cowhide turned into tightly-knit, waterproof armor over blubber arranged into a long, sleek form suitable for gliding in water. They didn't say how the skin took form in fins and a powerful tail fluke. They couldn't even rule out that the rate increases were due to selective pressure from pathogens on the skin and lungs in seawater.

A third problem is that the genetic changes do not appear specific to marine mammals.

All of the marine-accelerated genes under positive selection also showed significant evidence of positive selection across the mammalian tree (Supplemental Table S1), so their positive selection is not specific to marine branches. However, they did nevertheless show increased evolutionary rates on marine branches, suggesting these genes experienced a greater pressure to adapt in the marine environment (Supplemental Table S3).
Anyone see a strong genetic case for cow-to-whale evolution? Fourthly, the researchers in many cases could not rule out neutral evolution. (Here's where the camel trots in.) It's hard to know whether to laugh or cry at the imploding story:

Convergent changes on marine branches could have resulted from neutral processes or alternatively due to positive selection for the same amino acid variant. For the latter case, we would expect there to be more convergent amino acid changes in these genes for marine species compared to negative control species. We tallied convergent changes within a control set of species not expected to show convergence and chosen to match the topology and branch lengths of the marine species (Supplemental Fig. S3C) (alpaca, camel and their ancestral branch, bushbaby, human, and aardvark). As an additional control, we tallied the convergent changes between the marine and control branches (Supplemental Fig. S3D). The marine branch dataset did not show an excess of convergent amino acid sites (mean proportion = 0.086) compared to the control datasets (0.088 and 0.052, for control branches and marine-versus control branches, respectively) (Supplemental Fig. S3). Furthermore, the proportion of convergent changes on marine branches is small compared to the amount of excess changes that led to the acceleration in relative rate (mean proportion = 0.549; Supplemental Fig. S3B). Overall, we found no evidence for adaptively driven site- and amino acid-specific convergence in marine-accelerated genes.
This is sad. There was far greater evidence for "relaxation of constraint" than for positive selection (that's the kind of evolution that turns cave fish blind). There was NO evidence for "adaptively driven" change to the genes they decided had "accelerated" their evolution. Here's where the gnat flies into the picture:

On the other hand, marine-accelerated genes participating in olfaction, gustation, and muscle function exhibited overwhelming evidence of relaxation of constraint. These observations included greatly accelerated rates consistent with neutral evolution and even obvious genetic lesions and pseudogenization (e.g. GNAT3).
Obviously, genetic lesions (deleterious mutations) and pseudogenization are not going to help a cow swim. In Living Waters, Sternberg showed mathematically that it would take longer to expect just two cooperative mutations to occur than the maximum time expected for the entire evolution of a whale (100 million years vs 9 million years).

If this is the best evidence for the story of a Darwinian transformation of a land animal into a successful full-time marine creature, they should watch Living Waters and consider the explanatory power of "Intelligent Design in the Oceans of the Earth." It's not enough to point to possible amino acid differences here or there (not specific to marine mammals, and not clearly tied to innovative complex structures like echolocation) and announce Q.E.D. by saying they might have evolved faster in whales than they did with camels.

A good scientific explanation needs to account for the whole animal, with all its parts. A designing intelligence knows how to integrate multiple complex systems for function. Unguided natural processes are incapable of that, as Granville Sewell illustrated here with tornadoes and iPhones recently.

Once the materialistic bias against intelligence is lifted from the causal toolkit, science is liberated from an unnecessary restriction against knowledge. Sternberg says in the film:

Darwinism provided an explanation for the appearance of design, and argued that there is no Designer -- or, if you will, the designer is natural selection. If that's out of the way -- if that just does not explain the evidence -- then the flip side of that is, well, things appear designed because they are designed.
Whales illustrate a "global architecture that only a mind can bring about," Paul Nelson adds.

The data from genetics and molecular biology and a host of other fields have proven impossible to reconcile with undirected material causes. And, if science is an open-ended search for the truth, regardless of where the evidence leads, then what difference should it make if it leads to an intelligent cause?

Straining at irrelevant details to support a predetermined narrative because of some arbitrary rule that disallows non-material causes blinds science to the obvious. It strains at gnats while swallowing camels.

Blind to design.

UCLA Team Turbo-Charges Berra's Blunder
Evolution News & Views

Berra's Blunder has long been a prime example of how some evolutionists don't understand their own theory. It started back in 1990 when Tim Berra illustrated Darwinian evolution by showing how Corvettes showed "descent with modification" between 1953 and 1955. Phillip Johnson was quick to point out that "every one of those Corvettes was designed by engineers."

Far from illustrating naturalistic evolution, he argued, they illustrate "how intelligent designers will typically achieve their purposes by adding variations to a basic design plan." Casey Luskin caught Francis Collins and Karl Giberson committing this blunder in 2011. In 2014, Adrian Bejan confused airplane design with Darwinian evolution. And last year, the BBC News committed the blunder by applying evolution to robotics.

Now Berra's Blunder is back with a vengeance. If Berra restricted his evolution to Corvettes, Stuart Wolpert (writing for the UCLA Newsroom) applies it to every horseless carriage from the Model T to the DeLorean DMC-12, with color photos for emphasis. And Wolpert is not alone; he is backed up by Erik Gjesfjeld, a postdoctoral scholar in UCLA's Institute for Society and Genetics, smiling for the camera, and by Michael Alfaro, a professor of ecology and evolutionary biology at UCLA:

"Cars are exceptionally diverse but also have a detailed history of changes, making them a model system for investigating the evolution of technology," Gjesfjeld said.
The team drew data from 3,575 car models made by 172 different manufacturers, noting the first and last year each was manufactured.

"This is similar to when a paleontologist first dates a particular fossil and last sees a particular fossil," Gjesfjeld said. [Emphasis added.]

Writers could be forgiven for using evolution as a figure of speech, knowing that cars are intelligently designed. But these writers see no difference between cars and fossils.

Alfaro said applying an evolutionary biology approach worked so well because the automotive industry's technological records are very similar to the paleontological fossil record.
"In many instances, it is superior," he said. "We find in only a handful of cases a fossil record this complete."

Moreover, Gjesfjeld and Alfaro, with Wolpert in the newsroom, speak of competition, diversification, and survival as if cars are out in the jungle fending for themselves (fenders notwithstanding).

Based on the study, the researchers can project how the electric car marketplace will evolve over the next several years. Alfaro said the field now is in an early phase of rapid diversification, and although it's likely that many more electric and hybrid models will be introduced over the next 15 to 20 years, many won't survive for very long due to increasing competition. This, he said, will eventually lead to consolidation, with a small number of dominant models that will thrive.
Ultimately, Gjesfjeld said, the technique could help us make sense of the bewildering array of technologies humans have created. "Despite the use of numerous technologies in our everyday life, we lack a basic understanding of how all this technological diversity came to be," he said.

That he lacks a basic understanding of how cars came to be is true indeed, if he really thinks they emerged by a Darwinian process.

Too harsh? The news item does speak of design and management. The evolutionists don't say that random mutations in cars are selected. But the Darwinian comparison is clear from the opening paragraph:

A UCLA-led team of researchers has taken a unique approach to explain the way in which technologies evolve in modern society. Borrowing a technique that biologists might use to study the evolution of plants or animals, the scientists plotted the "births" and "deaths" of every American-made car and truck model from 1896 to 2014.
Surely the three men know cars are designed by intelligent engineers. What the article indicates, though, is a complete misunderstanding of Darwinian evolution. In its core essence, Darwinian evolution is unguided, purposeless, and mindless. That cannot be said of business managers who decide, using their minds, how best to beat the competition by designing their next models.

Maybe they committed artistic license. Let's see if the blunder vanishes in the peer-reviewed paper in the open-access journal Palgrave Communications, titled "Competition and extinction explain the evolution of diversity in American automobiles." The title, you notice right away, isn't helpful.

Despite considerable focus on the evolution of technology by social scientists and philosophers, there have been few attempts to systematically quantify technological diversity, and therefore the dynamics of technological change remain poorly understood. Here we show a novel Bayesian model for examining technological diversification adopted from palaeontological analysis of occurrence data. We use this framework to estimate the tempo of diversification in American car and truck models produced between 1896 and 2014, and to test the relative importance of competition and extrinsic factors in shaping changes in macro-evolutionary rates.
And thus it goes. But like a ray of light in the darkness, there is one point in the paper where Gjesfeld, Alfaro, and their three co-authors do catch the difference between designed automobiles and biological evolution.

Evolution has been and continues to be a valuable source of methods and theories for the study of human culture. Previous research has demonstrated that human culture undeniably evolves, but to what degree cultural change mirrors biological change remains an unsettled question (Tëmkin and Eldredge, 2007). The evolution of technology is a topic in which the evolutionary analogy has been particularly contentious, with debate often centred on the unit of evolutionary analysis, the replication of technological designs and the applicability of branching models to understanding the evolution to intentionally designed objects. This article presents an alternative perspective to the study of technological evolution that highlights the concept of diversity and a suite of macro-evolutionary methods useful in quantifying the dynamics of technological diversification.
Score one for recognizing "intentionally designed objects." But then, they leap right back into the blunder by comparing automobiles to organisms that they assumed evolved without intention or design. If Darwinian evolution fails to explain animal disparity and diversity in the fossil record, why on earth would they believe it can explain automobiles, which they surely recognize as intentionally designed objects?

In this research, technological diversity is conceptualized as the number of different technological lineages represented in a system. This definition of diversity is different from disciplines that acknowledge diversity as having the additional dimensions of balance and disparity (Stirling, 2007), but is analogous to the concept of species richness in biology, where a large number of methods are available for characterizing this component of diversity through time.
In no subsequent passage do they refer to intelligence, intention, or guidance. It's all diversification by means of non-intelligent factors. The blunder is especially clear in their Conclusion:

Just as the fossil record provides evidence for biological change through time, the archaeological and historical record has an important role to play in our understanding of technological and cultural evolution by providing empirical evidence for change through time. Our analyses of American car models reveals the shifting roles that origination and extinction have played in shaping diversity in one of the most important and ubiquitous technologies of the twentieth century. Furthermore, we demonstrate how the analysis of cultural change in a birth-death framework provides a means for testing alternative hypotheses about the extrinsic and intrinsic controls on technological diversification. Our approach is flexible and easily adapted to other cultural systems where a record of first and last appearances of artifacts is available. Overall, the quantitative study of diversification within a macro-evolutionary framework offers enormous potential to enrich our understanding of cultural and technological change.
Sorry, one cannot even begin to understand "cultural evolution" by basing one's explanation on a blunder. Darwinian evolution is not a theory of "change through time." It is a materialistic creation story. It gives, or seeks to give, design without a designer. In Darwin's theory, innovations occur randomly, and are selected by a mindless environment. Would it make any sense to speak of the evolution of a guided missile by unguided processes?


Such language is bound to confuse, not enlighten. Anything not reducible to unguided natural processes is not evolution; it is intelligent design. Before any progress can be made in the debate on origins, there must be clarity.

The argument for design condensed.

In The Design of Life, Dembski and Wells Offer a Powerful Survey of the Case for Intelligent Design
Evolution News & Views

To really appreciate the evidence for intelligent design, do you ever get the feeling you need several shelves of weighty tomes by design theorists, a great deal of time for reading and understanding them, and a PhD in biology, math, or philosophy wouldn't hurt either?


At the same time, the question of whether life's history bears the imprint of purposeful guidance is an ultimate question. Perhaps the ultimate question for every person to consider.Shouldn't weighing the inference to design be readily comprehensible to any thoughtful adult? Surely the folks at Discovery Institute owe it to the public to offer a slim and attractive, one-volume survey of the evidence for ID, authored by top ID scholars but also an easily accessible read, something you could, perhaps, give as a gift to a curious friend who you know perfectly well isn't going to wade through a whole library of ID works? But who might read one book...

Or put it a different way: How about a book that gives a view of the forest of ID evidences from high above, rather than one tree, however magnificent? Come on, Discovery Institute, give it to us!

Well, guess what? We did, and it's here. It is The Design of Life: Discovering Signs of Intelligence in Biological Systems, by mathematician and philosopher William A. Dembski and molecular and cell biologist Jonathan Wells. Both are Senior Fellows of the Center for Science & Culture, prolific authors and star scholars, decorated with advanced degrees from the University of Chicago, Yale, and UC Berkeley.

No less important than their academic distinctions, they also have a gift for explaining difficult scientific ideas in clear, inviting prose. That's what they do in The Design of Life, published originally by the Foundation for Thought and Ethics, now available to celebrate the launch of a new imprint of Discovery Institute Press, Foundation for Thought and Ethics (FTE) Books.

Through July 8, we will be selling the book for only $10 -- that's more than a 70 percent discount! And it includes both the full-color hardcover and an accompanying CD with additional materials.  Order now, because this special discount won't last long!

The Design of Life hits all the most fascinating challenges to orthodox evolutionary theory posed by top ID advocates, and the most substantial reasons for substituting Design for Darwinism. It's all here! Dembski and Wells survey the case for ID with sections on "Human Origins," "Genetics and Macroevolution," "The Fossil Record," "Similar Features," "Irreducible Complexity," "Specified Complexity," "The Origin of Life," and concluding with an Epilogue, "The 'Inherit the Wind' Stereotype."

All that in fewer than three hundred pages, with handsome color photos and illustrations, in a study and slim hardcover edition. In addition, each section concludes with thought-provoking Discussion Questions, which make The Design of Life the perfect guide and companion for your study group.

Another key figure in ID's scientific community, biochemist Michael Behe, says, "When future intellectual historians list the books that toppled Darwin's theory, The Design of Life will be at the top."

If overturning a stale, overbearing relic of 19th century materialism represents a challenge not only of persuading scientists but in explaining the relevant science to the lay public, then that would have to be true. This is the broad overview of ID that has been missing from your reading list.

Design in biology is real, not an illusion. Not convinced? Still uncertain that you've understood the inference to intelligent design? The Design of Life seals the deal.  If you haven't read this wonderful book, now is your chance!

Saturday 25 June 2016

File under 'Well said' XXX

“The object of life is not to be on the side of the majority, but to escape finding oneself in the ranks of the insane.” 
Marcus Aurelius, Meditations

A clash of titans XXII

Small brain,big smarts

Source:
University of Bonn

The elephantnose fish explores objects in its surroundings by using its eyes or its electrical sense -- sometimes both together. Zoologists at the University of Bonn and a colleague from Oxford have now found out how complex the processing of these sensory impressions is. With its tiny brain, the fish achieves performance comparable to that of humans or mammals. The advance results have been published online in the Proceedings of the National Academy of Sciences.

The elephantnose fish (Gnathonemus petersii) is widespread in the flowing waters of West Africa and hunts insect larva at dawn and dusk. It is helped by an electrical organ in its tail, which emits electrical impulses. The skin contains numerous sensor organs that perceive objects in the water by means of the changed electrical field. "This is a case of active electrolocation, in principle the same as the active echolocation of bats, which use ultrasound to perceive a three-dimensional image of their environment," says Professor Dr. Gerhard von der Emde at the Institute of Zoology at the University of Bonn. Furthermore, the elephantnose fish can also orient using its eyes.

Professor von der Emde, along with his doctoral candidate Sarah Schumacher and Dr. Theresa Burt de Perera of Oxford University, have now investigated how the unusual fish processes the information from the various sensory channels. Ms. Schumacher summarizes the results: "The animals normally use both senses. If necessary, for example because one of the two senses provides no information or the information of the two senses differs greatly, however, the fish can switch back and forth between their visual and electrical senses." The scientists were surprised by the manner in which the fish use these two senses to get the best perception of their environment: When the animals became familiar with an object in the aquarium, for example with the visual sense, they were also able to recognize it again using the electrical sense, although they had never perceived it electrically before.

Fish give precedence to the most reliable sensory information

In addition, the fish demonstrated a previously unexpected ability: Their brain gave more weight to the information it thought was more reliable. When the two senses delivered different information in the close range of up to two centimeters, the fish trusted only the electrical information and were then "blind" to the visual stimuli. In contrast, for more distant objects, the animals relied above all on their eyes. They perceived the environment best by using their visual and electrical senses in combination. "A transfer between the different senses was previously known only for certain highly developed mammals, such as monkeys, dolphins, rats, and humans," says Professor von der Emde. An example: In a dark, unfamiliar apartment, people feel their way forward to avoid stumbling. When the light goes on, the obstacles felt are recognized by the eye without any problem. Mammals process such information with their cerebral cortex. The elephantnose fish, however, has just a relatively small brain and no cerebral cortex at all -- but nevertheless switches back and forth between the senses.

Clever experimental setup

The scientists came up with a very clever test setup: The elephantnose fish was in an aquarium. Separated from it were two different chambers, between which the animal could choose. Behind openings to the chambers there were differently shaped objects: a sphere or a cuboid. The fish learned to steer toward one of these objects by being rewarded with insect larvae. Subsequently, it searched for this object again, to obtain the reward again.

When does the fish use a particular sense? In order to answer this question, the researchers repeated the experiments in absolute darkness. Now the fish could rely only on its electrical sense. As shown by images taken with an infrared camera, it was able to recognize the object only at short distances. With the light on the fish was most successful, because it was able to use its eyes and the electrical sense for the different distances. In order to find out when the fish used its eyes alone, the researchers made the objects invisible to the electrical sense. Now, the sphere and cuboid to be discriminated had the same electrical characteristics as the water.

Many repetitions of the individual experiments were necessary in order to apply statistical analyses to reach conclusions about the sensory processing of the elephantnose fish. The scientists worked with a total of ten animals, working more or less in shifts. "The behavior of the different individuals was nearly identical," says Professor von der Emde. For that reason the scientists are certain that this enormous sensory performance is achieved not only by a particulary talented specimen but by all elephantnose fish.

Story Source:

The above post is reprinted from materials provided by University of Bonn. Note: Materials may be edited for content and length.


Darwinism Vs. the real world XXXVI

In the Beginning: Male and Female
Howard Glicksman

Editor's note: Physicians have a special place among the thinkers who have elaborated the argument for intelligent design. Perhaps that's because, more than evolutionary biologists, they are familiar with the challenges of maintaining a functioning complex system, the human body. With that in mind, Evolution News is delighted to offer this series, "The Designed Body." For the complete series, see here. Dr. Glicksman practices palliative medicine for a hospice organization.

Everyone knows that a human being is either male or female. And most people know that the nucleus in each human cell normally contains 23 pairs of chromosomes which house the genetic material needed to produce the essential molecules for life. There are even some who know that, in addition to providing 22 somatic chromosomes, the female egg always provides an X chromosome and the male sperm provides either an X or Y chromosome to make a female (XX) or a male (XY) human person.

But what most people do not know or appreciate is how the body decides whether to make male or female parts. Although a given person's survival does not depend on having the right parts for reproduction, we all know that without adequate sexual function human life would be impossible. Moreover, as difficult as it may be for evolutionary biologists to explain the development of the different organ systems and the body's ability to control them to survive within the laws of nature, because of how human reproduction takes place, they must also explain the simultaneous development of both males and females since neither is of any use for survival without the other. Let's look at the structures each sex must have to reproduce and how the body decides which ones to develop.

The word sex comes from the Latin secare which means to separate or divide. Each of the 23 pairs of human chromosomes are separated from each other and placed within gametes called male sperm and female eggs. Human reproduction requires that the 23 chromosomes in the sperm be joined to the 23 chromosomes in the egg to form a new human being. The natural way this takes place is through sexual intercourse. This involves the male depositing sperm from his penis into the female's vagina so they can travel through the cervix into the body of her uterus and one of them can join up with an egg.

To accomplish this task the male is equipped with testes, which produce sperm, and a genital duct system (epididymis, vas deferens, and seminal vesicle) and external genitalia (penis, scrotum, and prostate) to help move the sperm from the testes out of his body. The female is equipped with external genitalia (labia, clitoris, and lower vagina) and a genital duct system (upper vagina, uterus, and fallopian tubes) to help guide the sperm toward an egg that has been released from one of her ovaries. The sperm and egg usually meet in one of the fallopian tubes of the uterus where the newly formed one-celled zygote forms a new human life. The zygote soon starts to divide, becoming an embryo which migrates into the body of the uterus and implants in its endometrial lining, allowing it to grow and develop into a newborn baby that exits about nine months later.

For the first several weeks of life the human embryo is asexual because the gonads have not yet declared themselves to be either testes or ovaries. Human embryology teaches that the undifferentiated gonads are destined to become ovaries by default unless acted upon by a molecule called the Testis Determining Factor (TDF). The genetic information needed to produce TDF is located on the Sex Determining Region of the Y chromosome (SRY). So this explains why a male must have a Y chromosome...or does it? Nature can sometimes play tricks and a translocation of the genes that code for the TDF may wind up on the X chromosome instead. This is how it is possible to have an XX male who, due to the TDF being on his X chromosome, forms testes instead of ovaries but who nevertheless is usually sterile and unable to reproduce. By telling the primordial gonads to become testes, the TDF on the SRY is therefore the master switch that makes the body go down the male track rather than the female one. But becoming a male with all the right parts for reproduction involves much more.

The testes produce testosterone, a steroid hormone derived from cholesterol, by using different enzymes encoded on several different somatic chromosomes. Each human embryo begins life with two different undeveloped genital duct systems, the Wolffian ducts and the Mullerian ducts. If the gonads do not become testes, the Wolffian ducts degenerate and disappear and the Mullerian ducts develop into the female genital duct system. However, if the gonads become testes, the testosterone they produce attaches to androgen receptors (encoded on the X chromosome) and directs the Wolffian ducts to develop into the male genital duct system.

However, if the androgen receptor is absent or not working at all this causes a condition called Complete Androgen Insensitivity Syndrome (CAIS). In CAIS the testes produce testosterone but, without properly working androgen receptors to respond to it, the Wolffian ducts degenerate anyway leaving no genital duct system. This takes place in about one in 20,000 male births and these people are known as XY females. They will have testes that may migrate into the groin and labia, which if removed, will prove their true original nature. But they will often go undetected, appearing as normal females until they fail to menstruate at the appropriate age when all the other signs of puberty have taken place. It is then that they will be found to not have male or female internal organs, and a vagina that is usually smaller than normal and leads into a blind pouch going nowhere. How can this be? Read on!

On the way to developing into a normal male, in addition to testosterone, the testes also produce Anti-Mullerian Hormone (AMH) which is encoded on the 19th chromosome. AMH attaches to specific AMH receptors (encoded on the 12th chromosome) and instructs the Mullerian duct cells to degenerate and disappear. This is very important for male fertility because if both the Wolffian and Mullerian ducts develop, they physically interfere with each other. This usually results in sterility. It also explains why the XY female with CAIS looks like a normal female but has neither a male nor female genital duct system. Since her Wolffian ducts didn't have working androgen receptors, they degenerated. But her testes also produced AMH which attached to the AMH receptors on her Mullerian ducts and made them degenerate too!

Here again we see that the embryo is destined to become female unless acted upon by specific molecules, in this case, testosterone and AMH, with the help of the androgen and AMH receptors. But there is still more to explain.

The external genitalia develop from the urogenital sinus, swellings, folds, and tubercle. If the gonads do not become testes and produce testosterone, these automatically develop into the female external genitalia. However, for this tissue to become normal male external genitalia requires much more stimulation of the androgen receptor than testosterone can provide. The cells in these tissues use an enzyme, called 5-alpha reductase (encoded on the second chromosome), to convert testosterone into dihydrotestosterone (DHT), which is a stronger stimulator of the androgen receptor. When DHT attaches to the androgen receptors in these embryonic tissues, it makes them develop into the penis, the scrotum, and the prostate gland. An XY person with a rare genetic disorder called 5-alpha reductase deficiency will have normally functioning testes and a normal male genital duct system, but their external genitalia will often be deformed and ambiguous making them incapable of participating in sexual intercourse and rendering them infertile. Again we see that the human embryo is destined to develop female parts by default or defective male parts unless acted upon by specific molecules, in this case the need for 5-alpha reductase to convert testosterone into DHT to adequately stimulate the androgen receptor.

To reiterate, the human embryo is destined to become female by default if not acted upon by several different chemicals. The TDF, usually on the Y chromosome, is what starts it down the male track by making the primordial gonads become testes; but much more is still needed. The testes use several enzymes encoded on different chromosomes to convert cholesterol into testosterone, which must attach to androgen receptors on the Wolffian ducts to form the male genital duct system. Without testosterone or properly working androgen receptors, the Wolffian ducts degenerate. In addition, to have normal male external genitalia requires a specific enzyme to convert testosterone into dihydrotestosterone so it can adequately stimulate the androgen receptors on the urogenital sinus, swellings, folds, and tubercle. If this enzyme is absent or not working right, the result is deformed and ambiguous external genitalia that cannot perform sexual intercourse, while if the androgen receptor is missing the result is female external genitalia. Finally, the testes also produce AMH which binds to AMH receptors on the Müllerian ducts to make them degenerate. If either of these are absent or not functioning properly, it results in the male having both a male and female genital duct system, which renders him infertile.

To paraphrase Stephen Meyer in The Information Enigma,different cell types require different proteins, different proteins require different genetically encoded instructions, and different instructions requires information that all human experience teaches comes from a mind and not material processes. Notwithstanding what it takes to produce properly working female parts, the information needed to make the male parts for reproduction requires the TDF, the enzymes to convert cholesterol into testosterone and testosterone into dihydrotestosterone, the androgen receptor, AMH and the AMH receptor.


The absence of any one of these results in either female parts or sterile male parts -- and the survival of the human race hangs in the balance. Yet at birth and for many years afterward, human beings are incapable of participating in reproduction. What happens to change that? That's what we'll look at next time.