Search This Blog

Thursday 21 April 2016

A clash of Titans XV

On the history of life a question worth asking:The Watchtower Society's commentary.IV

Has All Life Descended From a Common Ancestor?
Darwin thought that all life might be traced to a common ancestor. He imagined that the history of life on earth resembled a grand tree. Later, others believed that this “tree of life” started as a single trunk with the first simple cells. New species branched from the trunk and continued to divide into limbs, or families of plants and animals, and then into twigs, all the species within the families of plants and animals alive today. Is that really what happened?

What do many scientists claim? Many give the impression that the fossil record supports the theory of a common origin for life. They also claim that because all living things use similar “computer language,” or DNA, that all life must have evolved from a common ancestor.

What does the Bible say? The Genesis account states that plants, sea creatures, land animals, and birds were created “according to their kinds.” (Genesis 1:12, 20-25) This description allows for variation within a “kind,” but it implies that there are fixed barriers separating the different kinds. The Bible account of creation also leads us to expect that new types of creatures would appear in the fossil record suddenly and fully formed.

What does the evidence reveal? Does the evidence support the Bible’s description of events, or was Darwin correct? What have discoveries over the past 150 years revealed?

DARWIN’S TREE CHOPPED DOWN
In recent years, scientists have been able to compare the genetic codes of dozens of different single-celled organisms as well as those of plants and animals. They assumed that such comparisons would confirm the branching “tree of life” proposed by Darwin. However, this has not been the case.

What has the research uncovered? In 1999 biologist Malcolm S. Gordon wrote: “Life appears to have had many origins. The base of the universal tree of life appears not to have been a single root.” Is there evidence that all the major branches of life are connected to a single trunk, as Darwin believed? Gordon continues: “The traditional version of the theory of common descent apparently does not apply to kingdoms as presently recognized. It probably does not apply to many, if not all, phyla, and possibly also not to many classes within the phyla.”29*

Recent research continues to contradict Darwin’s theory of common descent. For example, in 2009 an article in New Scientist magazine quoted evolutionary scientist Eric Bapteste as saying: “We have no evidence at all that the tree of life is a reality.”30 The same article quotes evolutionary biologist Michael Rose as saying: “The tree of life is being politely buried, we all know that. What’s less accepted is that our whole fundamental view of biology needs to change.”31*

WHAT ABOUT THE FOSSIL RECORD?
Many scientists point to the fossil record as support for the idea that life emerged from a common origin. They argue, for example, that the fossil record documents the notion that fish became amphibians and reptiles became mammals. What, though, does the fossil evidence really show?

“Instead of finding the gradual unfolding of life,” says evolutionary paleontologist David M. Raup, “what geologists of Darwin’s time, and geologists of the present day actually find is a highly uneven or jerky record; that is, species appear in the sequence very suddenly, show little or no change during their existence in the record, then abruptly go out of the record.”32

In reality, the vast majority of fossils show stability among types of creatures over extensive amounts of time. The evidence does not show them evolving from one type into another. Unique body plans appear suddenly. New features appear suddenly. For example, bats with sonar and echolocation systems appear with no obvious link to a more primitive ancestor.

In fact, more than half of all the major divisions of animal life seem to have appeared in a relatively short period of time. Because many new and distinct life forms appear so suddenly in the fossil record, paleontologists refer to this period as “the Cambrian explosion.” When was the Cambrian period?

Let us assume that the estimates of researchers are accurate. In that case, the history of the earth could be represented by a time line that stretches the length of a soccer field (1). At that scale, you would have to walk about seven eighths of the way down the field before you would come to what paleontologists call the Cambrian period (2). During a small segment of that period, the major divisions of animal life show up in the fossil record. How suddenly do they appear? As you walk down the soccer field, all those different creatures pop up in the space of less than one step!

The relatively sudden appearance of these diverse life forms is causing some evolutionary researchers to question the traditional version of Darwin’s theory. For example, in an interview in 2008, evolutionary biologist Stuart Newman discussed the need for a new theory of evolution that could explain the sudden appearance of novel forms of life. He said: “The Darwinian mechanism that’s used to explain all evolutionary change will be relegated, I believe, to being just one of several mechanisms—maybe not even the most important when it comes to understanding macroevolution, the evolution of major transitions in body type.”33

PROBLEMS WITH THE “PROOF”
What, though, of the fossils that are used to show fish changing into amphibians, and reptiles into mammals? Do they provide solid proof of evolution in action? Upon closer inspection, several problems become obvious.

First, the comparative size of the creatures placed in the reptile-to-mammal sequence is sometimes misrepresented in textbooks. Rather than being similar in size, some creatures in the series are huge, while others are small.

A second, more serious challenge is the lack of proof that those creatures are somehow related. Specimens placed in the series are often separated by what researchers estimate to be millions of years. Regarding the time spans that separate many of these fossils, zoologist Henry Gee says: “The intervals of time that separate the fossils are so huge that we cannot say anything definite about their possible connection through ancestry and descent.”34*

Commenting on the fossils of fish and amphibians, biologist Malcolm S. Gordon states that the fossils found represent only a small, “possibly quite unrepresentative, sample of the biodiversity that existed in these groups at those times.” He further says: “There is no way of knowing to what extent, if at all, those specific organisms were relevant to later developments, or what their relationships might have been to each other.”35*

WHAT DOES THE “FILM” REALLY SHOW?
An article published in National Geographic in 2004 likened the fossil record to “a film of evolution from which 999 of every 1,000 frames have been lost on the cutting-room floor.”36 Consider the implications of that illustration.

Imagine that you found 100 frames of a feature film that originally had 100,000 frames. How would you determine the plot of the movie? You might have a preconceived idea, but what if only 5 of the 100 frames you found could be organized to support your preferred plot, while the other 95 frames tell a very different story? Would it be reasonable to assert that your preconceived idea of the movie was right because of the five frames? Could it be that you placed the five frames in the order you did because it suited your theory? Would it not be more reasonable to allow the other 95 frames to influence your opinion?

How does that illustration relate to the way evolutionists view the fossil record? For years, researchers did not acknowledge that the vast majority of fossils—the 95 frames of the movie—showed that species change very little over time. Why the silence about such important evidence? Author Richard Morris says: “Apparently paleontologists had adopted the orthodox idea of gradual evolutionary change and had held onto it, even when they discovered evidence to the contrary. They had been trying to interpret fossil evidence in terms of accepted evolutionary ideas.”37

What about evolutionists today? Could it be that they continue to place fossils in a certain order, not because such a sequence is well-supported by the majority of fossil and genetic evidence, but because doing so is in harmony with currently accepted evolutionary ideas?*

What do you think? Which conclusion fits the evidence best? Consider the facts we have discussed so far.

▪ The first life on earth was not “simple.”
▪ The odds against even the components of a cell arising by chance are astronomical.
▪ DNA, the “computer program,” or code, that runs the cell, is incredibly complex and gives evidence of a genius that far surpasses any program or information storage system produced by humans.
▪ Genetic research shows that life did not originate from a single common ancestor. In addition, major groups of animals appear suddenly in the fossil record.

In light of these facts, do you think it is reasonable to conclude that the evidence is in harmony with the Bible’s explanation of the origin of life? Many people, however, assert that science contradicts much of what the Bible says about creation. Is that true? What does the Bible really say?
(The biological term phyla (singular, phylum) refers to a large group of animals that have the same distinctive body plan. One way that scientists classify all living things is by a seven-step system in which each step is more specific than the one before it. Step one is kingdom, the broadest category. Then come the categories phylum, class, order, family, genus, and species. For example, the horse is categorized in the following way: kingdom, Animalia; phylum, Chordata; class, Mammalia; order, Perissodactyla; family, Equidae; genus, Equus; species, Caballus.

It should be noted that neither the New Scientist article nor Bapteste nor Rose mean to suggest that the theory of evolution is wrong. Their point, rather, is that Darwin’s proposed tree of life, a mainstay of his theory, is not supported by the evidence. Such scientists still seek other explanations involving evolution.

Henry Gee does not suggest that the theory of evolution is wrong. His comments are made to show the limits of what can be learned from the fossil record.

Malcolm S. Gordon supports the teaching of evolution.)
  FACTS AND QUESTIONS
▪ Fact: Two of evolution’s fundamental ideas—that life has a common origin and that major new body types appear as a result of the slow accumulation of small changes—are being challenged by researchers who do not support the Bible account of creation.

Question: Given the controversy over these pillars of Darwin’s theory, can his version of evolution honestly be referred to as scientific fact?

▪ Fact: All living organisms share similarly designed DNA, the “computer language,” or code, that governs much of the shape and function of their cell or cells.


Question: Could this similarity exist, not because they had the same ancestor, but because they had the same Designer?
What About Human Evolution?
Look up the topic of human evolution in many textbooks and encyclopedias and you will see a series of pictures—on one side a stooped, apelike creature followed by creatures that have progressively more upright posture and larger heads. At the end stands modern man. Such renderings along with sensational media reports of the discovery of so-called missing links give the impression that there is ample evidence that man evolved from apelike creatures. Are such assertions based on solid evidence? Consider what evolutionary researchers say about the following topics.*
 WHAT THE FOSSIL EVIDENCE ACTUALLY SHOWS
▪ Fact: At the beginning of the 20th century, all the fossils that were used to support the theory that humans and apes evolved from a common ancestor could fit on a billiard table. Since then, the number of fossils used to support that theory has increased. Now it is claimed that they would fill a railroad boxcar.38 However, the vast majority of those fossils consist only of single bones and isolated teeth. Complete skulls—let alone complete skeletons—are rare.39

Question: Has the increased number of fossils attributed to the human “family tree” settled the question among evolutionary experts as to when and how humans evolved from apelike creatures?


Answer: No. In fact, the opposite is true. When it comes to how these fossils should be classified, Robin Derricourt of the University of New South Wales, Australia, wrote in 2009: “Perhaps the only consensus now is that there is no consensus.”40 In 2007 the science journal Nature published an article by the discoverers of another claimed link in the evolutionary tree, saying that nothing is known about when or how the human line actually emerged from that of apes.41 Gyula Gyenis, a researcher at the Department of Biological Anthropology, Eötvös Loránd University, Hungary, wrote in 2002: “The classification and the evolutionary place of hominid fossils has been under constant debate.”* This author also states that the fossil evidence gathered so far brings us no closer to knowing exactly when, where, or how humans evolved from apelike creatures.42
ANNOUNCEMENTS OF “MISSING LINKS”
▪ Fact: The media often widely broadcasts the announcement that a new “missing link” has been discovered. For example, in 2009 a fossil dubbed Ida was unveiled with what one journal called “rock-star hype.”43 Publicity included this headline in The Guardian newspaper of the United Kingdom (UK): “Fossil Ida: Extraordinary Find Is ‘Missing Link’ in Human Evolution.”44 However, just days later, the UK science journal New Scientist said: “Ida is not a ‘missing link’ in human evolution.”45

Question: Why is each unveiling of a new “missing link” given wide media attention, whereas the removal of that fossil from the “family tree” is hardly mentioned?


Answer: Regarding those who make these discoveries, Robin Derricourt, quoted earlier, says: “The leader of a research team may need to over-emphasize the uniqueness and drama of a ‘discovery’ in order to attract research funding from outside the conventional academic sources, and they will certainly be encouraged in this by the print and electronic media, looking for a dramatic story.”46
TEXTBOOK DRAWINGS AND MODELS OF APE-MEN
▪ Fact: Depictions in textbooks and museums of the so-called ancestors of humans are often shown with specific facial features, skin color, and amount of hair. These depictions usually show the older “ancestors” with monkeylike features and the ones supposedly closer to humans with more humanlike facial features, skin tone, and hair.

Question: Can scientists reliably reconstruct such features based on the fossilized remains that they find?


Answer: No. In 2003, forensics expert Carl N. Stephan, who works at the Department of Anatomical Sciences, The University of Adelaide, Australia, wrote: “The faces of earlier human ancestors cannot be objectively constructed or tested.” He says that attempts to do so based on modern apes “are likely to be heavily biased, grossly inaccurate, and invalid.” His conclusion? “Any facial ‘reconstructions’ of earlier hominids are likely to be misleading.”47

DETERMINING INTELLIGENCE BY BRAIN SIZE
▪ Fact: The brain size of a presumed ancestor of humans is one of the main ways by which evolutionists determine how closely or distantly the creature is supposed to be related to humans.

Question: Is brain size a reliable indicator of intelligence?

Answer: No. One group of researchers who used brain size to speculate which extinct creatures were more closely related to man admitted that in doing so they “often feel on shaky ground.”48 Why? Consider the statement made in 2008 in Scientific American Mind: “Scientists have failed to find a correlation between absolute or relative brain size and acumen among humans and other animal species. Neither have they been able to discern a parallel between wits and the size or existence of specific regions of the brain, excepting perhaps Broca’s area, which governs speech in people.”49

What do you think? Why do scientists line up the fossils used in the “ape-to-man” chain according to brain size when it is known that brain size is not a reliable measure of intelligence? Are they forcing the evidence to fit their theory? And why are researchers constantly debating which fossils should be included in the human “family tree”? Could it be that the fossils they study are just what they appear to be, extinct forms of apes?

What, though, about the humanlike fossils of the so-called Neanderthals, often portrayed as proof that a type of ape-man existed? Researchers are beginning to alter their view of what these actually were. In 2009, Milford H. Wolpoff wrote in the American Journal of Physical Anthropology that “Neandertals may have been a true human race.”50


Honest observers readily recognize that egos, money, and the need for media attention influence the way that “evidence” for human evolution is presented. Are you willing to put your trust in such evidence?

The internet of trees Vs.Darwin

Forests Use an Underground Supply Network
Evolution News & Views

It was a big surprise. Scientists at the University of Basel report an unexpected finding: trees in the woods -- even unrelated species -- trade large amounts of carbon with each other. How? They communicate through an even more unrelated organism: fungi.

Forest trees use carbon not only for themselves; they also trade large quantities of it with their neighbours. Botanists from the University of Basel report this in the journal Science. The extensive carbon trade among trees -- even among different species -- is conducted via symbiotic fungi in the soil. [Emphasis added.]
This is more than a free trade agreement. It's a veritable economy, as the paper in Science describes:

Forest trees compete for light and soil resources, but photoassimilates, once produced in the foliage, are not considered to be exchanged between individuals. Applying stable carbon isotope labeling at the canopy scale, we show that carbon assimilated by 40-meter-tall spruce is traded over to neighboring beech, larch, and pine via overlapping root spheres. Isotope mixing signals indicate that the interspecific, bidirectional transfer, assisted by common ectomycorrhiza networks, accounted for 40% of the fine root carbon (about 280 kilograms per hectare per year tree-to-tree transfer). Although competition for resources is commonly considered as the dominant tree-to-tree interaction in forests, trees may interact in more complex ways, including substantial carbon exchange.
The carbon takes the form of "photoassimilates," i.e., complex compounds produced by photosynthesis. 280 kilos is a lot. In English units, that's over 600 pounds. In a five-year study, the team watched labeled carbon dioxide assimilated into the compounds traverse from the tree tops down through the root tips, and up into surrounding trees:

The only way the carbon could have been exchanged from spruce to beech, pine or larch tree -- or vice versa -- is by the network of tiny fungal filaments of the shared mycorrhizal fungi. Understory plants which partner up with other types of fungi remained entirely unmarked. The research group called the discovered exchange of large quantities of carbon among completely unrelated tree species in a natural forest "a big surprise".
One of the scientists remarked, "Evidently the forest is more than the sum of its trees." In a Perspective piece for Science, Marcel G. A. van der Heijden referred to this process as "underground networking" through "mycorrhizal pipelines." Small seedlings had been known to share carbon this way, but not mature trees.

Does this improve forest fitness? Van der Heijden is not sure. Carbon does not seem to be a limiting resource. One could imagine that pathways for carbon could emerge haphazardly as symbiotic fungi spread their hyphae, and that resources would reach equilibrium by diffusion. There are hints more is going on, however. For one thing, the relationships are complex. For another, they function in symbiosis.

These underground networks can be highly complex because each individual tree and fungus has its own network and can associate with different partners.
The results reported by Klein et al. also have implications for key questions in mycorrhizal research: Why is this symbiosis so widespread and why has it evolved so successfully? The observation that 4% of net primary productivity is transferred to neighboring trees suggests that carbon is a nonlimiting resource, and not growth-limiting for these large trees. Thus, carbon allocation and loss to mycorrhizal fungi does not necessarily impair plant fitness. The exchange of "nonlimiting" carbon for nutrients may be one of the key factors responsible for the evolutionary stability of the mycorrhizal symbiosis.

If plants have an intranet (as we reported recently), why not an internet? One suspects that this system involves information transfer as well as carbon transfer. It's already been determined that plants communicate through the air with volatile organic compounds. They can signal one another about threats, for instance. If they already communicate through one medium, why not another? It would be analogous to the Internet using both wired and wireless channels.

Other hints of regulated function include (a) hosts make specific connections, (b) the communication is bidirectional, and (c) the shared carbon products are diverse. Indeed, the authors know that theories of regulated sharing have been around for years.

It has been suggested that because of the unpredictability of disturbance events and the divergence of responses among plant communities, mycorrhizal fungi and their host plant species are under selective pressure to evolve generality. The groups of plants that are interlinked through a common mycorrhizal network are hence termed "guilds". The identity and ensemble of fungal species may affect plant community structure and ecosystem productivity, with mycorrhiza improving plant fitness by increasing phosphorus and nitrogen uptake. As a result, mycorrhizal networks are considered an integral part of the autotrophic system and are essential components in ecosystem resilience to change. Yet, these benefits have traditionally been studied from a nutrient supply perspective, and the mycorrhiza "pipeline" was never shown to transfer considerable amounts (>1 g) of mobile carbon compounds among trees.
Contrary to evolutionary expectations, this network of supply lines is cooperative rather than competitive. It promotes ecosystem resilience to change. It looks designed for productivity of the community as a whole.

Determining the function of this carbon transfer will require additional research. Care for a prediction? The system likely includes bidirectional information transfer that leads to specific responses. It won't reduce to random diffusion of compounds that happen to find pathways this way or that. The sharing of resources will be found to be regulated and purposeful. Perhaps it's a form of cloud backup, where resources can be stashed for sharing in stressful times. Brian Owens at New Scientist suggests that this "wood wide web" will aid scientific "understanding of how forests can respond to the stresses of climate change, like drought or new insect pests."

Intelligent design can prompt new research into this newly-recognized phenomenon, leading to understanding and appreciation for the overall beauty of a forest ecosystem. The science-stopper would be to shrug and say, "It evolved."

Wednesday 20 April 2016

On 21st century divination

Science as Astrology: A Gene for, or Rather Against, Virginity?
Evolution News & Views


As a kid we used to look forward to visits to the International House of Pancakes, where the highlights included not just pancakes but, just inside the entrance to the restaurant, a device like a gumball machine that dispensed horoscopes. For 25¢ the Starscroll device offered little scrolls the size of a cigarette, color-coded to the month and your sign. Scorpio was always orange.

The scroll, more detailed than what you'd find in a daily newspaper, included general prognostication and advice plus more specific forecasts as to your character, tendencies, challenges, etc. So this story from the world of science brings back unexpected fond memories.

Sometimes, in fact, it seems much of the most hyped research is about relieving us of the burden of personal moral responsibility. Except instead of it all being written into the stars, it's written into your genes. You couldn't ask for a better illustration than the hubbub around a paper out yesterday from Nature Genetics. A headline at Scientific American captures the gist: "Do Genes Time One's Loss of Virginity?"

Get that -- genes, not choice:

A person's age at the onset of sexual behavior matters, because early sexuality and becoming a parent at a young age are linked to many measures of health and economic success. "If you look in [scientific] literature, relatively early ages at first sex and first birth have been associated with lower educational achievement, poorer physical health, poorer mental health -- a complex web of negative stuff," says John Perry, a geneticist at Cambridge who led the research, published Monday in Nature Genetics. Perry says he was particularly intrigued by the idea that something people think of as purely a matter of free choice would have a large contribution from genetics.

Yes, intriguing. More:

The team found that 38 specific regions of the genome contributed to the age at which people first had sex. Those regions roughly fell into two groups, Perry says: genes that act on reproductive biological processes such as estrogen signaling and genes that appear to play a role in behavior and personality. One gene that the team associated with early sexual behavior, CADM2, influences risk-taking behavior, and another, MSRA, leads to irritability. "We weren't expecting to find this sort of thing when we started out," Perry says.

They weren't expecting it. They always have to say that, don't they? We looked up CADM2 and found:

This gene encodes a member of the synaptic cell adhesion molecule 1 (SynCAM) family which belongs to the immunoglobulin (Ig) superfamily. The encoded protein has three Ig-like domains and a cytosolic protein 4.1 binding site near the C-terminus. Proteins b elonging to the protein 4.1 family crosslink spectrin and interact with other cytoskeletal proteins. Multiple transcript variants encoding different isoforms have been found for this gene. [Provided by RefSeq, Feb. 2012.]

We're not sure how a variant of CADM2 could, as The Guardian puts it in another credulous article, "link an early start to one's sex life with risk-taking behaviour and having a large number of children."


It's utterly arbitrary, not less so than adducing the day of your birth to predict romantic, economic, and other fortunes. All of this reads exactly like a horoscope. For a more sober take on the relationship between genes and you, see our current podcast over at ID the Future, "Dr. Jonathan Wells: Biology's Quiet Revolution."

Another failed Darwinian prediction XIX

Altruism

In Origins, Darwin did not examine the question of altruistic behavior in great detail. But he did explain that natural selection could not result in destructive behavior. After all, evolution is driven by reproductive differentials and “every single organic being may be said to be striving to the utmost to increase in numbers.” (Darwin, 52)

But today we know of many examples of unambiguous altruism which are destructive to reproductive chances. It is not controversial that the evolutionary prediction Darwin issued has been falsified many times over. Indeed, a plethora of designs are “more injurious than beneficial” (Darwin, 162) to reproduction. They are found everywhere, from the mindless, single-cell bacteria to the many subtle behavior patterns of humans.

Consider those who choose to have few or no children. Such behavior is not uncommon, and it certainly harms one’s reproductive success. There are also many examples of altruism including giving blood and donating organs, giving to charities, helping the needy, and heroic wartime acts such as smothering a grenade or rescuing prisoners. Such acts of love and kindness falsify the evolutionary expectation that organisms should be oriented toward high levels of reproductive success.

Kin selection

In the last fifty years evolutionists have proposed several explanations for altruistic behavior. As a consequence the theory has become enormously more complex and incredible. First, the hypothesis of kin selection was proposed by William Hamilton in the early 1960s. (Hamilton) It has since become fundamental in evolutionary explanations of altruism. The idea is that altruistic behavior is a consequence of shared genes. For example, consider a genetic modification that encourages siblings to help each other. Such altruism increases the reproductive success of the sibling. If the sibling shares the genetic modification (as they well might), then the altruistic gene ends up helping to propagate a copy of itself. Thus the behavior is not quite so altruistic after all. From the evolutionary perspective of reproductive success, altruistic behavior makes sense where there are shared genes.

Therefore, the hypothesis of kin selection implies that altruism will be greatest where gene sharing is greatest, such as between siblings and between parent and child, in human relationships. On the other hand, altruism will be weaker when there is less gene sharing (e.g., between cousins).

In addition to the degree of gene sharing, the hypothesis of kin selection also implies that altruism will depend on the number of individuals being helped. A person will be more inclined to aid multiple siblings, for there would be more shared genes at stake. As Hamilton put it, the hypothesis implies that while no one is prepared to sacrifice his life for any single person, everyone will sacrifice it for more than two brothers, or four half-brothers, or eight first-cousins. (Hamilton)

A more complicated selection process

Within a few years kin selection was used to explain a wide range of behaviors in addition to altruism. (e.g., Trivers, 1971; Williams) But these explanations brought with them an enormously complex evolutionary process. Consider altruism between siblings. Evolution’s unguided genetic modifications must have somehow created this complex behavior. This new modification created a medium level of altruism toward people that could be recognized as sisters or brothers. It was not too much altruism or too little. It was not toward females rather than males, short people rather than tall people, or blondes rather than brunettes. Presumably all these, and many more, types of behavior would be just as likely to have arisen as was the needed sibling altruism. So evolution must have constructed, tested and selected from an enormous set of potential behaviors before finding the few, rare behaviors that fit the kin selection criteria.

And the testing of these behaviors would not be simple. Initially, a new behavior, such as sibling altruism, would not fit the kin selection criteria. This is because, initially, the genes for the new behavior are in only a single individual. Not until the next generation could the genes possibly be distributed amongst siblings. And when that time does come, there is the question of whether the altruistic behavior would actually enhance the reproductive chances of the sibling. Being kind to a sibling does not necessarily do the job the first time. Many generations might be needed, as kin selection can only occur when an altruistic act genuinely improves the reproductive success of the sibling.

Evolution’s creative powers

Even more of a problem for evolution is the creation of these complex behaviors. Somehow unguided genetic modifications must have resulted in genes for a wide range of attitudes and behaviors. The list is staggering. There are of course the obvious behaviors such as love, hate, guilt, retribution, social tendencies and habits, friendship, empathy, gratitude, trustworthiness, a sense of fulfillment at giving aid and guilt at not giving aid, high and low self esteem, competition, and so forth.

These behaviors are supposed to have evolved according to the kin selection criteria, along with many more nuanced behaviors. For instance, love not only evolved, but in varying degrees depending on the degree of shared genes. It is weaker within the extended family than within the family. Low self esteem behavior not only evolved, but the art of not hiding it can be advantageous and so also evolved. Sibling rivalries evolved, but only to a limited degree. In wealthy families, it is more advantageous for siblings to favor sisters while in poor families siblings ought to favor brothers. So those behaviors evolved. Mothers in poor physical condition ought to treat daughters as more valuable than sons. Likewise, socially or materially disadvantaged parents ought to treat daughters as more valuable than sons.

Evolutionists explain all these nuanced behaviors according to the calculus of kin selection. For instance, consider sympathy and compassion. According to evolution, compassion and sympathy are nothing more than cleverly disguised manipulations. For while we may like to think our sympathy is pure, in fact it comes at a price. The unspoken yet universal expectation is: “you owe me one.” As one science writer put it, “Exquisitely sensitive sympathy is just highly nuanced investment advice. Our deepest compassion is our best bargain hunting.” (Wright, 205) What such explanations fail to explain is the enormous complexity now added to the theory. Yes, the altruism is explained as advantageous, but such nuanced behaviors must somehow have arisen in the first place, in order to be later selected.

And, evolutionists warn, we should not be fooled by our intuition that certain behaviors are “obvious,” or “right.” For instance, love for one’s children and grief at the death of a child may seem to be natural reactions, but evolutionists explain that what seems to us to be common sense is, itself, merely a manifestation of our evolved behaviors. Yes we love our children, but only because such a behavior was selected. We have evolution to thank for our heartfelt emotions.

But do not many of our moral sentiments and behaviors reflect right and wrong? Are not loyalty, sacrifice, honor, our sense of justice, obligation and shame, remorse and moral indignation more than merely the result of mutations and selection? No, warn evolutionists, such appeals only reveal the power of evolution. As one writer put it, “It is amazing that a process as amoral and crassly pragmatic as natural selection could design a mental organ that makes us feel as if we’re in touch with higher truths. Truly a shameless ploy.” (Wright, 212)

In fact, evolutionists explain, evolution has constructed elaborate deception mechanisms. Children use temper tantrums to manipulate parents. Parents countered this with the ability to discern and children, in turn, refined their manipulation with heartfelt whining. All a result of the complexities of natural selection. Cheating, suspicion, exaggeration, embellishment, hypocrisy, displays of morality, false compliments, self-serving dishonesty, boasting and self-deprecation are all evolved behaviors in accordance with natural selection.

Deception is rampant and evolutionists believe it evolved in biology to enhance reproduction. In turn, the ability to recognize deception has evolved, which in turn spurred the evolution of some degree of self deception, to better fool the opponent. This self deception should not be underestimated. It really means that we are, to a certain degree, truly deceived about the world around us. Our brains did not evolve to know truth, but some skewed version of reality. As one evolutionist concluded, “the conventional view that natural selection favors nervous systems which produce ever more accurate images of the world must be a very naïve view of mental evolution.” (Trivers, 1976)

Here evolution aligns itself with radical skepticism. Nothing can be known to be true. If evolution is true, then not only are our minds nothing more than the product of unguided natural processes, but those very processes inbred a certain degree of falsehood. The evolutionist’s claim that evolution is a fact is self-refuting, for it leads to the conclusion that they cannot know that evolution is a fact.

Regardless of how deceived we are, we do know that evolution now calls for unguided genetic variation to create an incredible menagerie of complex and nuanced behavior. The enormous inventory of human behavior, which was selected, is only a tiny fraction of what must have been created. It would be swamped by the myriad behaviors which were not advantageous. In order to explain altruism, evolutionists now make a staggering claim about what must have arisen in nature. But the claim is a trade secret, as it is rarely discussed. Evolution has become a theory of seemingly endless speculation about behavior with little explanation of how the specific behaviors actually are supposed to have arisen. Evolutionists speculate at length about how behaviors could have been advantageous, with little consideration of the origin of such behaviors. Here is a representative example of this speculation, regarding an imagined behavioral strategy called “Selfish Punisher,” which exploits altruists and punishes other selfish individuals.

Individuals who behave altruistically are vulnerable to exploitation by more selfish individuals within their own group, but groups of altruists can robustly out-compete more selfish groups. Altruism can therefore evolve by natural selection as long as its collective advantage outweighs its more local disadvantage. All evolutionary theories of altruism reflect this basic conflict between levels of selection. It might seem that the local advantage of selfishness can be eliminated by punishment, but punishment is itself a form of altruism. For instance, if you pay to put a criminal in jail, all law-abiding citizens benefit but you paid the cost. If someone else pays you to put the criminal in jail, this action costs those individuals something that other law-abiding citizens didn’t have to pay. Economists call this the higher-order public goods problem. Rewards and punishments that enforce good behavior are themselves forms of good behavior that are vulnerable to subversion from within. (Binghamton University)

Sub hypotheses such as this are now rampant within evolutionary theory. They are required to explain the wide range of behaviors in biology, and they force evolution to unprecedented levels of complexity. Unguided genetic change must be capable of somehow generating a wide array of behaviors with incredible precision.

And not only must all these varied and nuanced behaviors have arisen via unguided genetic modifications, but orders of magnitude more behaviors, which were not advantageous, must also have arisen. If unguided genetic variations were able to generate such pinpoint behaviors from which selection could choose, then there must also have been a vast menagerie of bizarre behaviors that were not selected. For the genetic variations were unguided. There was no foreknowledge of which behaviors were advantageous and which were not. The latter vastly outnumber the former, and so any given variation was most likely selected against. Only the rare exceptions were advantageous and evolutionary history must be chocked full of never observed pathologies that would not pass evolution’s test.

Problem of non reciprocal altruism

In addition to the tremendous complexity that kin selection adds to the theory of evolution, there is the problem that it does not explain altruistic behaviors for which no advantage to the individual can be imagined. Why do soldiers smother grenades? Why do rescuers risk their lives? Why does Mother Theresa help the needy in far away countries? Kin selection does not explain altruistic acts where there is no advantage to one’s own genes.

To explain such altruism, evolutionists must turn to unlikely speculation. For instance, a popular explanation is that in earlier ages our ancestors lived in small clans and villages where blood relations where more common. If most everyone in the village was a relative of yours, then altruistic behaviors would be advantageous more often. By the time civilization expanded into cities and nations, the altruistic behavior had evolved. So now we give aid to unrelated people because our evolved genes consider all people to have at least some relation to us.

In this model today’s examples of altruism that do not seem explainable using kin selection are viewed as vestigial behaviors. They were selected in the past, but now are operating outside the scope of kin selection. So although, as we saw above, evolution must have tremendous precision in creating finely tuned, nuanced behaviors, here evolution becomes a crude instrument. When needed, evolution can act with surgical precision. But when problems arise, evolution is suddenly clumsy. It is remarkable that, on the one hand Mother Theresa is left clueless that orphans on the other side of the world do not share her genes, yet on the other hand evolution can precisely construct detailed behaviors such as the Selfish Punisher strategy, the detailed altruism profiles between wealthy and poor families, and so forth. Mother Theresa falsifies the evolutionary expectations. As a consequence the theory is forced to adopt low probability, high complexity modifications. The theory is not explaining the data, it is adapting to the data.

Several other explanations have also been contemplated. For instance, perhaps aiding another individual enhance one’s status and attractiveness. Perhaps selection occurs at higher levels than the gene. (Wilson, Wilson; Bowles) Or perhaps what seems to be selfless altruism actually plays to self-centered motives. Yes, “Mother Theresa is an extraordinary person,” explained one evolutionist, “but it should not be forgotten that she is secure in service of Christ and the knowledge of her Church’s immortality.” (Wilson) Ultimately, even helping the poor on the other side of the world can be rationalized with natural selection. With these and other explanations, evolutionists are able to provide some sort of selection rationale for practically any behavior.

Conclusions

Darwin’s theory of evolution led him to several expectations and predictions, regarding behavior in general, and altruism in particular. We now know those predictions to be false. Furthermore, in order to explain many of the behaviors we find in biology, evolutionists have had to add substantial serendipity to their theory. The list of events that must have occurred to explain how evolution produced what we observe is incredible and the theory has become absurdly complex.

References

Binghamton University. 2008. “Selfishness May Be Altruism's Unexpected Ally.” ScienceDaily May 2.

Bowles, Samuel. 2006. “Group competition, reproductive leveling, and the evolution of human altruism.” Science 314:1569-1572.

Darwin, Charles. 1872. The Origin of Species. 6th ed. London: John Murray.
http://darwin-online.org.uk/content/frameset?itemID=F391&viewtype=text&pageseq=1

Hamilton, William D. 1964. “The genetical evolution of social behavior.” J Theoretical Biology 1:1-52.

Trivers, Robert. 1971. “The evolution of reciprocal altruism.” Quarterly Review of Biology 46:35-56.

Trivers, Robert. 1976. In: Richard Dawkins, The Selfish Gene. New York: Oxford University Pres.

Williams, George. 1966. Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought. Princeton: Princeton University Press.

Wilson, Edward O. 1978. On Human Nature. Cambridge, MA: Harvard University Press.

Wilson, David Sloan, Edward O. Wilson. 2007. “Rethinking the theoretical foundation of sociobiology.” Quarterly Review of Biology 82:327-348.

Wright, Robert. 1994. The Moral Animal. New York: Vintage Books.

On the history of life a question worth asking:The watchtower Society's commentary III

Where Did the Instructions Come From?

Why do you look the way you do? What determines the color of your eyes, your hair, your skin? What about your height, your build, or your resemblance to one or both of your parents? What tells the ends of your fingers to grow soft pads on one side and hard, protective nails on the other?

In Charles Darwin’s day, the answers to such questions were shrouded in mystery. Darwin himself was fascinated by the way traits are passed along from one generation to the next, but he knew little about the laws of genetics and even less about the mechanisms within the cell that govern heredity. Now, however, biologists have spent decades studying human genetics and the detailed instructions that are embedded in the amazing molecule called DNA (deoxyribonucleic acid). Of course, the big question is, Where did these instructions come from?

What do many scientists claim? Many biologists and other scientists feel that DNA and its coded instructions came about through undirected chance events that took place over the course of millions of years. They say that there is no evidence of design in the structure of this molecule nor in the information that it carries and transmits nor in the way that it functions.17

What does the Bible say? The Bible suggests that the formation of our different body parts—and even the timing of their formation—involves a figurative book that originates with God. Notice how King David was inspired to describe matters, saying of God: “Your eyes saw even the embryo of me, and in your book all its parts were down in writing, as regards the days when they were formed and there was not yet one among them.”—Psalm 139:16.

What does the evidence reveal? If evolution is true, then it should seem at least reasonably possible that DNA could have come about by means of a series of chance events. If the Bible is true, then DNA should provide strong evidence that it is the product of an orderly, intelligent mind.

When considered in the simplest of terms, the subject of DNA is quite understandable—and fascinating. So let us take another trip to the inside of a cell. This time, though, we will visit a human cell. Imagine that you are going to a museum designed to teach you about how such a cell works. The whole museum is a model of a typical human cell—but magnified some 13,000,000 times. It is the size of a giant sports arena, the kind that can seat an audience of about 70,000 people.

You enter the museum and stare awestruck at this wondrous place full of strange forms and structures. Near the center of the cell stands the nucleus, a sphere about 20 stories tall. You make your way there.

You go through a door in the nucleus’ outer skin, or membrane, and look around you. Dominating this chamber are 46 chromosomes. Arranged in identical pairs, they vary in height, but the pair nearest you is about 12 stories tall (1). Each chromosome has a pinched place near the middle, so it looks a bit like a link sausage but is as thick as a massive tree trunk. You see a variety of bands running across the model chromosomes. As you draw closer, you see that each horizontal band is divided by vertical lines. Between those are shorter horizontal lines (2). Are they stacks of books? No; they are the outer edges of loops, packed tightly in columns. You pull at one of them, and it comes free. You are amazed to see that the loop is composed of smaller coils (3), also neatly arranged. Within those coils is the main feature of all of this—something resembling a long, long rope. What is it?

THE STRUCTURE OF AN AMAZING MOLECULE
Let us simply call this part of the model chromosome a rope. It is about an inch [2.6 cm] thick. It is looped tightly around spools (4), which help to form the coils within coils. These coils are attached to a kind of scaffold that holds them in place. A sign on the display explains that the rope is packed very efficiently. If you were to pull the rope from each of these model chromosomes and lay it all out, from end to end it would stretch about halfway around the earth!*

One science book calls this efficient packaging system “an extraordinary feat of engineering.”18 Does the suggestion that there was no engineer behind this feat sound credible to you? If this museum had a huge store with millions of items for sale and they were all so tidily arranged that you could easily find any item you needed, would you assume that no one had organized the place? Of course not! But such order would be a simple feat by comparison.

In the museum display, a sign invites you to take a length of this rope in your hands for a closer look (5). As you run it between your fingers, you see that this is no ordinary rope. It is composed of two strands twisted around each other. The strands are connected by tiny bars, evenly spaced. The rope looks like a ladder that has been twisted until it resembles a spiral staircase (6). Then it hits you: You are holding a model of the DNA molecule—one of the great mysteries of life!

A single DNA molecule, tidily packaged with its spools and scaffold, makes up a chromosome. The rungs of the ladder are known as base pairs (7). What do they do? What is all of this for? A display sign offers a simplified explanation.

THE ULTIMATE INFORMATION STORAGE SYSTEM
The key to the DNA, the sign says, lies in those rungs, the bars connecting the two sides of the ladder. Imagine the ladder split apart. Each side has partial rungs sticking out. They come in only four types. Scientists dub them A, T, G, and C. Scientists were amazed to discover that the order of those letters conveys information in a sort of code.

You may know that Morse code was invented in the 19th century so that people could communicate by telegraph. That code had only two “letters”—a dot and a dash. Yet, it could be used to spell out countless words or sentences. Well, DNA has a four-letter code. The order in which those letters—A, T, G, and C—appear forms “words” called codons. Codons are arranged in “stories” called genes. Each gene contains, on average, 27,000 letters. These genes and the long stretches between them are compiled into chapters of a sort—the individual chromosomes. It takes 23 chromosomes to form the complete “book”—the genome, or total of genetic information about an organism.*

The genome would be a huge book. How much information would it hold? All told, the human genome is made up of about three billion base pairs, or rungs, on the DNA ladder.19 Imagine a set of encyclopedias in which each volume is over a thousand pages long. The genome would fill 428 of such volumes. Adding the second copy that is found in each cell would make that 856 volumes. If you were to type out the genome by yourself, it would be a full-time job—with no vacations—lasting some 80 years!

Of course, what you would end up with after all that typing would be useless to your body. How would you fit hundreds of bulky volumes into each of your 100 trillion microscopic cells? To compress so much information so greatly is far beyond us.

A professor of molecular biology and computer science noted: “One gram of DNA, which when dry would occupy a volume of approximately one cubic centimeter, can store as much information as approximately one trillion CDs [compact discs].”20 What does that mean? Remember, the DNA contains the genes, the instructions for building a unique human body. Each cell has a complete set of instructions. DNA is so dense with information that a single teaspoonful of it could carry the instructions for building about 350 times the number of humans alive today! The DNA required for the seven billion people living on earth now would barely make a film on the surface of that teaspoon.21

A BOOK WITH NO AUTHOR?
Despite advances in miniaturization, no man-made information storage device can approach such a capacity. Yet, the compact disc offers an apt comparison. Consider this: A compact disc may impress us with its symmetrical shape, its gleaming surface, its efficient design. We see clear evidence that intelligent people made it. But what if it is embedded with information—not random gibberish, but coherent, detailed instructions for building, maintaining, and repairing complex machinery? That information does not perceptibly change the weight or the size of the disc. Yet, it is the most important feature of that disc. Would not those written instructions convince you that there must be some intelligent mind at work here? Does not writing require a writer?

It is not far-fetched to compare DNA to a compact disc or to a book. In fact, one book about the genome notes: “The idea of the genome as a book is not, strictly speaking, even a metaphor. It is literally true. A book is a piece of digital information . . . So is a genome.” The author adds: “The genome is a very clever book, because in the right conditions it can both photocopy itself and read itself.”22 That brings up another important aspect of DNA.

MACHINES IN MOTION
As you stand there in the quiet, you find yourself wondering if the nucleus of a cell is really as still as a museum. Then you notice another display. Above a glass case containing a length of model DNA is a sign that reads: “Push Button for Demonstration.” You push the button, and a narrator explains: “DNA has at least two very important jobs. The first is called replication. DNA has to be copied so that every new cell will have a complete copy of the same genetic information. Please watch this simulation.”

Through a door at one end of the display comes a complex-looking machine. It is actually a cluster of robots closely linked together. The machine goes to the DNA, attaches itself, and begins to move along the DNA as a train might follow a track. It moves a little too fast for you to see exactly what it is doing, but you can easily see that behind it, there are now two complete DNA ropes instead of one.

The narrator explains: “This is a greatly simplified version of what goes on when DNA is replicated. A group of molecular machines called enzymes travel along the DNA, first splitting it in two, then using each strand as a template to make a new, complementary strand. We cannot show you all the parts involved—such as the tiny device that runs ahead of the replication machine and snips one side of the DNA so that it can twirl around freely instead of getting wound up too tight. Nor can we show you how the DNA is ‘proofread’ several times. Errors are detected and corrected to an amazing degree of accuracy.”—See the diagram on pages 16 and 17.

The narrator continues: “What we can show you clearly is the speed. You noticed this robot moving at a pretty good clip, didn’t you? Well, the actual enzyme machinery moves along the DNA ‘track’ at a rate of about 100 rungs, or base pairs, every second.23 If the ‘track’ were the size of a railroad track, this ‘engine’ would be barreling along at the rate of over 50 miles [80 km] per hour. In bacteria, these little replication machines can move ten times faster than that! In the human cell, armies of hundreds of these replication machines go to work at different spots along the DNA ‘track.’ They copy the entire genome in just eight hours.”24 (See the box “A Molecule That Can Be Read and Copied,” on page 20.)

“READING” DNA
The DNA-replicating robots trundle off the scene. Another machine appears. It too moves along a stretch of DNA, but more slowly. You see the DNA rope entering one end of this machine and emerging from the other—unchanged. But a single strand, a new one, is coming out of a separate opening in the machine, like a growing tail. What is going on?

Again the narrator provides an explanation: “DNA’s second job is called transcription. The DNA never leaves the safe shelter of the nucleus. So how can its genes—the recipes for all the proteins your body is made of—ever be read and used? Well, this enzyme machine finds a spot along the DNA where a gene has been switched on by chemical signals coming in from outside the cell nucleus. Then this machine uses a molecule called RNA (ribonucleic acid) to make a copy of that gene. RNA looks a lot like a single strand of DNA, but it is different. Its job is to pick up the information coded in the genes. The RNA gets that information while in the enzyme machine, then exits the nucleus and heads to one of the ribosomes, where the information will be used to build a protein.”

As you watch the demonstration, you are filled with wonder. You are deeply impressed by this museum and the ingenuity of those who designed and built its machines. But what if this entire place with all its exhibits could be set in motion, demonstrating all the thousands upon thousands of tasks that go on in the human cell at the same time? What an awe-inspiring spectacle that would be!

You realize, though, that all these processes carried out by tiny, complex machines are actually going on right now in your own 100 trillion cells! Your DNA is being read, providing directions to build the hundreds of thousands of different proteins that make up your body—its enzymes, tissues, organs, and so on. Right now your DNA is being copied and proofread for errors so that a fresh set of directions is there to be read in each new cell.

WHY DO THESE FACTS MATTER?
Again, let us ask ourselves, ‘Where did all these instructions come from?’ The Bible suggests that this “book” and its writing originate with a superhuman Author. Is that conclusion really out-of-date or unscientific?

Consider this: Could humans even build the museum just described? They would run into real difficulty if they tried. Much about the human genome and how it functions is little understood as yet. Scientists are still trying to figure out where all the genes are and what they do. And the genes comprise only a small part of the DNA strand. What about all those long stretches that do not contain genes? Scientists have called those parts junk DNA, but more recently they have been modifying that stance. Those parts may control how and to what extent the genes are used. And even if scientists could create a full model of the DNA and the machines that copy and proofread it, could they make it actually function as the real one does?

Famous scientist Richard Feynman left this note on a blackboard shortly before his death: “What I cannot create, I do not understand.”25 His candid humility is refreshing, and his statement, obviously true in the case of DNA. Scientists cannot create DNA with all its replication and transcription machinery; nor can they fully understand it. Yet, some assert that they know that it all came about by undirected chance and accidents. Does the evidence that you have considered really support such a conclusion?

Some learned men have decided that the evidence points the other way. For example, Francis Crick, a scientist who helped to discover DNA’s double-helix structure, decided that this molecule is far too organized to have come about through undirected events. He proposed that intelligent extraterrestrials may have sent DNA to the earth to help get life started here.26

More recently, noted philosopher Antony Flew, who advocated atheism for 50 years, did an about-face of sorts. At 81 years of age, he began to express a belief that some intelligence must have been at work in the creation of life. Why the change? A study of DNA. When asked if his new line of thought might prove unpopular among scientists, Flew reportedly answered: “That’s too bad. My whole life has been guided by the principle . . . [to] follow the evidence, wherever it leads.”27


What do you think? Where does the evidence lead? Imagine that you found a computer room in the heart of a factory. The computer is running a complex master program that directs all the workings of that factory. What is more, that program is constantly sending out instructions on how to build and maintain every machine there, and it is making copies of itself and proofreading them. What would that evidence lead you to conclude? That the computer and its program must have made themselves or that they were produced by orderly, intelligent minds? Really, the evidence speaks for itself.

(The textbook Molecular Biology of the Cell uses a different scale. It says that trying to pack these long strands into a cell nucleus would be like trying to pack 24 miles [40 km] of very fine thread into a tennis ball—but in such a neat, organized way that each part of the thread remains easily accessible.

Each cell contains two complete copies of the genome, 46 chromosomes in all.
  A MOLECULE THAT CAN BE READ AND COPIED
How can DNA be read and copied so reliably? The four chemical bases used in the DNA ladder—A, T, G, and C—form the ladder’s individual rungs by always pairing in the same way: A with T, and G with C. If one side of a rung is A, the other side is always T; G always meets C. Therefore, if you have one side of the ladder, you know the other side of the ladder. Where one side of the ladder reads GTCA, the other side must read CAGT. The partial rungs differ in length, but when they pair up with their complements, they make complete rungs of one uniform length.

Discovering that fact led scientists to another breakthrough about this remarkable molecule: DNA is perfectly suited for being copied over and over. The enzyme machine that replicates DNA takes in free-floating units of those four chemicals from the environment in the nucleus. Then it uses them to complete each rung on the split DNA strand.


So a DNA molecule really is like a book that is read and copied over and over again. In the average life span of a human, DNA is copied some 10,000,000,000,000,000 times, with amazing fidelity.28
FACTS AND QUESTIONS
▪ Fact: DNA is packaged within the chromosomes in a manner so efficient that it has been called a “feat of engineering.”

Question: How could such order and organization arise by undirected chance events?

▪ Fact: DNA’s capacity to store information still has no equal in today’s computer age.

Question: If human computer technicians cannot achieve such results, how could mindless matter do so on its own?

▪ Fact: DNA contains all the instructions needed to build a unique human body and maintain it throughout life.

Question: How could such writing come about without a writer, such programming without a programmer?

▪ Fact: For DNA to work, it has to be copied, read, and proofread by a swarm of complex molecular machines called enzymes, which must work together with precision and split-second timing.


Question: Do you believe that highly complex, highly reliable machinery can come about by chance? Without solid proof, would not such a belief amount to blind faith?
  

Tuesday 19 April 2016

When strolling through the flea market that is 'settled science' ,caveat emptor.

William A. Wilson on the "Cult of Science



In First Things, William A. Wilson has what may be the most trenchant takedown of the "Science Says" mentality that I've come across. It's a long and fearless essay. Seeing it all put together in one place as Wilson does is liberating.
He utterly disenchants the popular, cult-like notion that science, any field of it -- from physics to psychology and everything in between -- is simply a distributor of objective truth, to be trusted implicitly. The reality is that scientists are built from the same "crooked timber" we all are, and it shows in their work. Buyer beware.
Much of this is familiar. There is the scandal of widespread failed replication. There is Stanford University Medical School professor John Ioannidis's notorious essay, "Why Most Published Research Findings Are False." Says Wilson, "There is no putting it nicely, deliberate fraud is far more widespread than the scientific establishment is generally willing to admit." Retractions of research findings are common -- that's well known. But when celebrated findings are withdrawn, that is less likely to catch the attention of the media:
Two of the most vaunted physics results of the past few years -- the announced discovery of both cosmic inflation and gravitational waves at the BICEP2 experiment in Antarctica, and the supposed discovery of superluminal neutrinos at the Swiss-Italian border -- have now been retracted, with far less fanfare than when they were first published.
And there's peer review. Ah, the vaunted standard, peer review. This hits the nail on the head: "If peer review is good at anything, it appears to be keeping unpopular ideas from being published." Yes, proponents of counter-theories in competition with Darwinism know this dynamic particularly well:
What they do not mention is that once an entire field has been created -- with careers, funding, appointments, and prestige all premised upon an experimental result which was utterly false due either to fraud or to plain bad luck -- pointing this fact out is not likely to be very popular. Peer review switches from merely useless to actively harmful. It may be ineffective at keeping papers with analytic or methodological flaws from being published, but it can be deadly effective at suppressing criticism of a dominant research paradigm. Even if a critic is able to get his work published, pointing out that the house you've built together is situated over a chasm will not endear him to his colleagues or, more importantly, to his mentors and patrons.
It's built into the structure of the modern scientific enterprise that senior researchers are jealous guardians of orthodoxy, to whom younger colleagues bow and scrape. Funerals, as the aged pass on with the advance of time, don't solve the problem -- as some have hopefully suggested:
The quantum physicist Max Planck famously quipped: "A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it." Planck may have been too optimistic. A recent paper from the National Bureau of Economic Research studied what happens to scientific subfields when star researchers die suddenly and at the peak of their abilities, and finds that while there is considerable evidence that young researchers are reluctant to challenge scientific superstars, a sudden and unexpected death does not significantly improve the situation, particularly when "key collaborators of the star are in a position to channel resources (such as editorial goodwill or funding) to insiders."
Wilson raises the possibility that some of the best science may involve the rediscovery and unearthing of dormant truths. He gives a helpful formulation to describe this -- "scientific regress." Yes, check:
[I]f raw results are so often false, the filtering mechanisms so ineffective, and the self-correcting mechanisms so compromised and slow, then science's approach to truth may not even be monotonic. That is, past theories, now "refuted" by evidence and replaced with new approaches, may be closer to the truth than what we think now. Such regress has happened before: In the nineteenth century, the (correct) vitamin C deficiency theory of scurvy was replaced by the false belief that scurvy was caused by proximity to spoiled foods. Many ancient astronomers believed the heliocentric model of the solar system before it was supplanted by the geocentric theory of Ptolemy. The Whiggish view of scientific history is so dominant today that this possibility is spoken of only in hushed whispers, but ours is a world in which things once known can be lost and buried.
His description of the Cult of Science, a noxious and juvenile culture familiar from countless science blogs and news sites, cannot be improved on:
The Cult is related to the phenomenon described as "scientism"; both have a tendency to treat the body of scientific knowledge as a holy book or an a-religious revelation that offers simple and decisive resolutions to deep questions. But it adds to this a pinch of glib frivolity and a dash of unembarrassed ignorance. Its rhetorical tics include a forced enthusiasm (a search on Twitter for the hashtag "#sciencedancing" speaks volumes) and a penchant for profanity. Here in Silicon Valley, one can scarcely go a day without seeing a t-shirt reading "Science: It works, b--es!" The hero of the recent popular movie The Martian boasts that he will "science the sh-- out of" a situation. One of the largest groups on Facebook is titled "I f--ing love Science!" (a name which, combined with the group's penchant for posting scarcely any actual scientific material but a lot of pictures of natural phenomena, has prompted more than one actual scientist of my acquaintance to mutter under her breath, "What you truly love is pictures"). Some of the Cult's leaders like to play dress-up as scientists -- Bill Nye and Neil deGrasse Tyson are two particularly prominent examples -- but hardly any of them have contributed any research results of note. Rather, Cult leadership trends heavily in the direction of educators, popularizers, and journalists.
It's significant that Wilson himself is a software engineer, meaning that he is in the business of satisfying paying customers, not merely ginning up publicity for himself, impressing colleagues, and boosting his own self-esteem. If he were active in any other area of science, he could not possibly have gotten away with writing as frankly as this.